pytorch VGG11识别cifar10数据集(训练+预测单张输入图片操作)

PyTorch VGG11识别CIFAR10数据集

本文将详细讲解如何使用PyTorch的VGG11模型对CIFAR10数据集进行分类,并提供训练和预测单张输入图片的操作。

准备工作

在开始之前,需要安装PyTorch和CIFAR10数据。可以使用以下命令来安装:

pip install torch torchvision

CIFAR10数据集可以在PyTorch中直接下载,也可以从官网下载并手动导入。在本文中,我们将使用PyTorch中的自下载功能。

加载数据集

首先,我们需要加载CIFAR10数据集。可以使用以下代码来加载数据集:

import torch
import torchvision
import torchvision.transforms as transforms

# 定义数据预处理
transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

# 加载训练集
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
                                        download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
                                          shuffle=True, num_workers=2)

# 加载测试集
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
                                       download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
                                         shuffle=False, num_workers=2)

# 定义类别标签
classes = ('plane', 'car', 'bird', 'cat',
           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

在上面的代码中,我们使用transforms定义了数据预处理,包括将图像转换为张量并进行归一化。然后,我们使用torchvision.datasets.CIFAR10加载训练集和测试集,并使用torch.utils.data.DataLoader定义了数据加载器。最后,我们定义了类别标签。

定义模型

接下来,我们需要定义VGG11模型。可以使用以下代码来定义模型:

import torch.nn as nn
import torch.nn.functional as F

# 定义VGG11模型
class VGG11(nn.Module):
    def __init__(self):
        super(VGG11, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=3, padding=1)
        self.conv2 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
        self.conv3 = nn.Conv2d(128, 256, kernel_size=3, padding=1)
        self.conv4 = nn.Conv2d(256, 256, kernel_size=3, padding=1)
        self.conv5 = nn.Conv2d(256, 512, kernel_size=3, padding=1)
        self.conv6 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
        self.conv7 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
        self.conv8 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
        self.fc1 = nn.Linear(512 * 2 * 2, 4096)
        self.fc2 = nn.Linear(4096, 4096)
        self.fc3 = nn.Linear(4096, 10)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        x = F.max_pool2d(x, 2)
        x = F.relu(self.conv2(x))
        x = F.max_pool2d(x, 2)
        x = F.relu(self.conv3(x))
        x = F.relu(self.conv4(x))
        x = F.max_pool2d(x, 2)
        x = F.relu(self.conv5(x))
        x = F.relu(self.conv6(x))
        x = F.max_pool2d(x, 2)
        x = F.relu(self.conv7(x))
        x = F.relu(self.conv8(x))
        x = F.max_pool2d(x, 2)
        x = x.view(-1, 512 * 2 * 2)
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = F.relu(self.fc2(x))
        x = F.dropout(x, training=self.training)
        x = self.fc3(x)
        return x

# 实例化模型
net = VGG11()

在上面的代码中,我们定义了VGG11模型,并实例化了模型。

训练模型

接下来,我们需要训练模型。可以使用以下代码来练模型:

import torch.optim as optim

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

# 训练模型
for epoch in range(2):  #循环数据集

    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        # 获取输入
        inputs, labels = data

        # 梯度零
        optimizer.zero_grad()

        # 正向传播,反向传播,优化
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        # 打印统计信息
        running_loss += loss.item()
        if i % 2000 == 1999:    # 每2000个小批量数据打一次
            print('[%d, %5d] loss: %.3f' %
                  (epoch + 1, i + 1, running_loss / 2000))
            running_loss = 0.0

print('Finished Training')

在上面的代码中,我们定义了损失函数和优化器,并使用for循环多次循环数据集训练。在每个小批量数据上,我们执行正向传播、反向传播和优化,并打印统计信息。

预测单张输入图片

最后,我们需要使用训练好的模型对单张输入进行预测。可以使用以下代码来预测单张输入图片:

import matplotlib.pyplot as plt
import numpy as np
from PIL import Image

# 加载单张输入图片
img = Image.open('test.jpg')
img = transform(img)
img = img.unsqueeze(0)

# 预测单张输入
outputs = net(img)
_, predicted = torch.max(outputs, 1)

# 打印预测结果
print('Predicted: ', classes[predicted[0]])

# 显示输入图片
img = img.squeeze()
img = img.numpy().transpose((1, 2, 0))
img = img * 0.5 + 0.5
plt.imshow(img)
plt.show()

在上面的代码中,我们使用PIL库加载单张输入图片,并使用transform进行数据预处理。然后,我们使用训练好的模型对输入图片进行预测,并打印预测结果。最后,我们使用matplotlib库显示输入图片。

以下是另一个示例,演示如何使用训练好的模型对测试集进行预测:

# 测试模型
correct = 0
total = 0
with torch.no_grad():
    for data in testloader:
        images, labels = data
        outputs = net(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

print('Accuracy of the network on the 10000 test images: %d %%' % (
    100 * correct / total))

在上面的代码中,我们使用for循环遍历测试集中的每个数据,并使用训练好的模型对其进行预测。然后,我们计算模型的准确率,并打印结果。

总结

在本文中,我们使用PyTorch的VGG11模型对CIFAR10数据集进行分类,并提供了训练和预测单张输入图片的操作。通过本文的学习,您可以了解如何使用PyTorch构建和训练深度学习模型,并对图像分类任务有更深入的理解。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:pytorch VGG11识别cifar10数据集(训练+预测单张输入图片操作) - Python技术站

(1)
上一篇 2023年5月14日
下一篇 2023年5月14日

相关文章

  • Python-OpenCV教程之图像的位运算详解

    Python-OpenCV教程之图像的位运算详解 简介 图像的位运算需要用到OpenCV中的位运算方法,包括按位与、按位或、按位异或、按位取反。图像的位运算主要应用于图像融合、遮罩操作和图像分割等领域。 按位与(bitwise_and) 按位与操作将两个图像的每一个像素进行按位与运算。当两个像素的二进制位都为1时,输出结果的该像素对应二进制位才为1,否则为0…

    python 2023年5月14日
    00
  • Python编程深度学习计算库之numpy

    Python编程深度学习计算库之numpy 在Python编程中,NumPy是一个非常重要的科学计算库,它提供了许多高效的数值计算工具。本攻略将详细介绍Python NumPy的矩阵对象及其方法,包括矩阵的创建、矩阵的属性和方法、矩阵的运算、矩阵的转置、矩阵的逆、矩阵的行列式、矩阵的特征值和特征向量等。 导入NumPy模块 在使用NumPy模块之前,需要先导…

    python 2023年5月13日
    00
  • Ubuntu+python将nii图像保存成png格式

    Ubuntu+Python将NII图像保存成PNG格式 NII图像是医学图像中常用的一种格式,但是在一些情况下,我们需要将NII图像转换为PNG格式,以便于在其他应用程序中使用。本攻略将介绍如何使用Python在Ubuntu系统中将NII图像保存为PNG格式。 安装必要的库 在开始之前,我们需要安装必要的库。在Ubuntu系统中,我们可以使用以下命令安装必要…

    python 2023年5月14日
    00
  • numpy.ndarray 实现对特定行或列取值

    以下是numpy.ndarray实现对特定行或列取值的攻略: numpy.ndarray实现对特定行或列取值 在NumPy中,可以使用切片和索引来实现对特定行或列取值。以下是一些示例: 对特定行取值 可以使用切片来对特定行取值。以下是一个示例: import numpy as np a = np.array([[1, 2, 3], [4, 5, 6], [7…

    python 2023年5月14日
    00
  • python画图中文不显示问题的解决方法

    Python画图中文不显示问题的解决方法 在Python中,使用matplotlib等库进行画图时,有时会出现中文不显示的问题。本文将详细介绍Python画图中文不显示问题的解决方法。 步骤1:安装中文字体 在Python中,需要安装中文字体才能正确显示中文。可以使用以下命令安装中文字体: sudo apt-get install fonts-wqy-zen…

    python 2023年5月14日
    00
  • Python定时爬取微博热搜示例介绍

    这里是关于“Python定时爬取微博热搜示例介绍”的完整攻略。 什么是定时爬虫? 在爬虫这个领域,定时爬虫是指利用爬虫脚本按照预先设定的时间间隔,自动地从爬取目标网站上获取所需数据。 因此,后续可以通过所得数据进行一系列的分析与处理,进而推动业务的深入发展。 Python 定时爬取微博热搜 下面将会讲述两条 Python 定时爬取微博热搜 示例,帮助大家更好…

    python 2023年5月13日
    00
  • Numpy的各种下标操作的示例代码

    NumPy是一个Python科学计算库,其中包含了许多用于数组操作的函数。其中,下标操作是一种非常重要的机制,它允许NumPy在数组中访问和修改元素。下面是Numpy的各种下标操作的示例代码的完整攻略: 基本下标操作 NumPy的基本下标操作与Python的列表下标操作类似。以下是一个基本下标操作的示例: import numpy as np # 创建一个形…

    python 2023年5月14日
    00
  • pip matplotlib报错equired packages can not be built解决

    1. pip安装matplotlib报错 在使用pip命令安装matplotlib库时,可能会遇到以下错误: ERROR: Failed building wheel for matplotlib 这个错误通常是由于缺少依赖项或环境配置不正确导致的。 2. 解决方法 2.1 安装依赖项 在安装matplotlib之前,需要先安装一些依赖项。可以使用以下命令安…

    python 2023年5月14日
    00
合作推广
合作推广
分享本页
返回顶部