Opencv Canny边缘检测 边缘强度

Opencv Canny边缘检测边缘强度的完整攻略

Opencv Canny边缘检测是一种常用的图像处理技术,可以用于图像的边缘检测、特征提取等。本文将详细讲解Opencv Canny边缘检测边缘强度的完整攻略,包括基本原理、方法和两个示例说明。

Opencv Canny边缘检测的基本原理

Opencv Canny边缘检测是一种基于梯度变化的边缘检测算法,通过对图像进行高斯滤波、计算梯度、非极大值抑制、双阈值处理等操作,实现对图像的边缘检测。其中,边缘强度是指像素点的梯度大小,是Canny边检测的重要输出结果之一。具体实现方法包括:

  • cv2.Canny函数:用于图像的边缘检测。

Opencv Canny边缘检测边缘强度的使用方法

Opencv库提供cv2.Canny函数,可以用于图像的边缘检测。函数的基本语法如下:

edges = cv2.Canny(image, threshold1, threshold2[, edges[, apertureSize[, L2gradient]]])

其中,image表示输入图像,threshold1和threshold2表示双阈值处理的两个阈值,edges表示输出的边缘图像,apertureSize表示Sobel算子的大小,L2gradient表示是否使用L2范数计算梯度大小。

示例说明

下面是两个Opencv Canny边缘检测边缘强度的示例:

示例1:使用Canny边缘检测获取边缘强度

import cv2
import numpy as np
from matplotlib import pyplot as plt

# 读取图像
img = cv2.imread('test.jpg', cv2.IMREAD_GRAYSCALE)

# 使用Canny边缘检测获取边缘强度
edges = cv2.Canny(img, 100, 200)

# 显示原始图像和边缘强度图像
plt.subplot(121), plt.imshow(img, cmap='gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(edges, cmap='gray')
plt.title('Edge Strength'), plt.xticks([]), plt.yticks([])
plt.show()

运行该代码,系统会显示原始图像和边缘强度图像。

示例2:使用Canny边缘检测获取边缘强度并绘制边缘

import cv2
import numpy as np
from matplotlib import pyplot as plt

# 读取图像
img = cv2.imread('test.jpg', cv2.IMREAD_GRAYSCALE)

# 使用Canny边缘检测获取边缘强度
edges = cv2.Canny(img, 100, 200)

# 绘制边缘
contours, hierarchy = cv2.findContours(edges, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
img_contours = cv2.drawContours(img, contours, -1, (0, 255, 0), 2)

# 显示原始图像和绘制边缘后的图像
plt.subplot(121), plt.imshow(img, cmap='gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(img_contours, cmap='gray')
plt.title('Edge Detection'), plt.xticks([]), plt.yticks([])
plt.show()

运行该代码,系统会显示原始图像和绘制边缘后的图像。

结论

Opencv Canny边缘检测是一种基于梯度变化的边缘检测算法,通过对图像进行高斯滤波、计算梯度、非极大值抑制、双阈值处理等操作,实现对图像的边缘检测。通过Opencv中的cv2.Canny函数,可以实现对图像的边缘检测,并获取边缘强度。通过本文介绍,应该已经了解了Opencv Canny边缘检测边缘强度的基本原理、方法和两个示例说明,根据需要灵活使用。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Opencv Canny边缘检测 边缘强度 - Python技术站

(0)
上一篇 2023年5月10日
下一篇 2023年5月10日

相关文章

  • Opencv Evaluation

    以下是关于Opencv Evaluation的完整攻略。 Opencv Evaluation基本原理 Opencv Evaluation是一种评估图像处理算法性能的工具,它可以评估算法的准确性、召回率、精确度等指标。Opencv Evaluation的基本原理将测试图像和标注数据输入到算法中,然计算算法的准确性、召回率、精确度等指标,从而评估算法的性能。 O…

    python 2023年5月11日
    00
  • Opencv YCbCr+离散余弦变换+量化

    Opencv YCbCr+离散余弦变换+量化的完整攻略 Opencv YCbCr+离散余弦变换+量化是一种常用的图像处理技术,可以用于图像的压缩、特征提取操作。本文将详细讲解Opencv YCbCr+离散余弦变换+量化的完整攻略,包括基本原理、和两个示例说明。 Opencv YCr+离散余弦变换+量的基本原理 Opencv YCbCr+离散弦变换+量化是一种…

    python 2023年5月10日
    00
  • Opencv 膨胀

    Opencv 膨胀是一种常用的图像处理技术,可以用于图像的形态学处理,例如去除噪声、填充空洞、分离物体等。本文将详细讲解Opencv 膨胀的完整攻略,包括基本原理、方法和两个示例。 Opencv 膨胀的基本原理 Opencv 膨胀是一种基于结构元素的图像处理技术,通过图像中的像素进行膨胀,可以扩大物体的面积,填充空洞,去除噪声等。具体实现方法包括: cv2.…

    python 2023年5月10日
    00
  • Opencv 利用k-平均聚类算法进行减色处理第二步

    以下是关于Opencv利用k-平均聚类算法进行减色处理第二步的详细攻略。 Opencv利用k-平均聚类算法进行减色处理第二步基本原理 利用k-平聚类算法进行减色处理的第二步是指对聚类结果进行评估,来判断聚类的效果和准确。常用的估指标包括SSE、轮廓系数等。 Opencv利用k-平均聚类法进行减色处理第二步步骤 计算SSE 计算轮廓系数 示例 下面是两个Ope…

    python 2023年5月11日
    00
  • Opencv 使用误差平方和算法进行模式匹配

    Opencv 使用误差平方和算法进行模式匹配是一种常用的图像处理技术,可以用于在图像中查找指定的模式。本文将详细讲解Opencv 使用误差平和算法进行模式匹配的完整攻略,包括基本原理、方法和两个示例。 Opencv 使用误差平方和算法进行模式匹配基本原理 Opencv 使用误差平方和算法进行模式匹配是一种基于模板匹配的技,通过对图像进行模板匹配操作,可以在图…

    python 2023年5月10日
    00
  • Opencv 8-邻域连通域标记

    以下是关于Opencv 8-邻域连通域标记的详细攻略。 Opencv 8-邻域连通域标记基本原理 Opencv 8-邻通域标记是一常用的图像处理技术,用于在图像中找连通域。具体实现方法包括: cv2.connectedComponents 函数:用于对二值图像进行连通标记。 8-域连通域标记算法的基本原理是二值图像中的像素点分为若干个连通域每个连通域中的像素…

    python 2023年5月10日
    00
  • Opencv Random Cropping

    OpenCV 中的 RandomCropping 是一种图像增强技术,它可以通过随机裁剪图像来增加数据集的多样性。在 OpenCV 中,可以使用 cv2.random_crop 函数来实现 RandomCropping。 使用 RandomCropping 的基本步骤如下: 读取图像 随机裁剪图像 显示裁剪后的图像 以下是两个示例说明: 示例一:使用 Ran…

    python 2023年5月11日
    00
  • Opencv Motion Filter

    OpenCV MotionFilter OpenCV MotionFilter是一种图像处理方法,可以用于模拟运动模糊效果。本文将介绍OpenCV MotionFilter的基本原理和使用方法,并提供两个示例。 OpenCV MotionFilter的基本原理 OpenCV MotionFilter是一种线性平滑滤波器,可以用于模拟运动模糊效果。运动糊的基本…

    python 2023年5月10日
    00
合作推广
合作推广
分享本页
返回顶部