偶然在网上看到了一个让我很感兴趣的项目 Magenta,用Tensorflow让神经网络自动创造音乐。
--第一步,安装,工具准备!--
--第二步:开始创作!--
1. 第一个bash:创建旋律数据库
#!/bin/bash##创建旋律数据库MIDI_DIRECTORY=/home/liukun/TensorFlow/magenta/music/train #这里换成你的文件路径就行了SEQUENCES_TFRECORD=/home/liukun/TensorFlow/magenta/music/train/notesequences.tfrecordbazel run //magenta/scripts:convert_midi_dir_to_note_sequences -- \--midi_dir=$MIDI_DIRECTORY \--output_file=$SEQUENCES_TFRECORD \--recursive
2. 第二个bash:提取出训练样本
# TFRecord file containing NoteSequence protocol buffers from convert_midi_dir_to_note_sequences.py.SEQUENCES_TFRECORD=/home/liukun/TensorFlow/magenta/music/train/notesequences.tfrecord# TFRecord file that TensorFlow's SequenceExample protos will be written to. This is the training dataset.TRAIN_DATA=/home/liukun/TensorFlow/magenta/music/train/training_melodies.tfrecord# Optional evaluation dataset. Also, a TFRecord file containing SequenceExample protos.EVAL_DATA=/home/liukun/TensorFlow/magenta/music/eval_melodies.tfrecord# Fraction of input data that will be written to the eval dataset (if eval_output flag is set).EVAL_RATIO=0.10bazel run //magenta/models/basic_rnn:basic_rnn_create_dataset -- \--input=$SEQUENCES_TFRECORD \--train_output=$TRAIN_DATA \--eval_output=$EVAL_DATA \--eval_ratio=$EVAL_RATIO
3. 第三个bash : 训练神经网络模型, 最耗费时间!!!
#首先compile basic_rnn工具bazel build //magenta/models/basic_rnn:basic_rnn_trainTRAIN_DATA=/home/liukun/TensorFlow/magenta/music/train/training_melodies.tfrecord#训练模型,其中“rnn_layer_size”是神经网络的层数,可以自定义/home/liukun/TensorFlow/magenta/bazel-bin/magenta/models/basic_rnn/basic_rnn_train --experiment_run_dir=/home/liukun/TensorFlow/magenta/music --sequence_example_file=$TRAIN_DATA --eval=false --hparams='{"rnn_layer_sizes":[30]}' --num_training_steps=2000
4. 第四个bash:生成新的的旋律!
##生成旋律#指定测试旋律的文件地址PRIMER_PATH=/home/liukun/TensorFlow/magenta/music/origional/Canon.mid#注意这里是绝对地址,只能指定一首歌# num_outputs 指定生成曲目数量bazel run //magenta/models/basic_rnn:basic_rnn_generate -- \--experiment_run_dir=/home/liukun/TensorFlow/magenta/magenta/models \--hparams='{"rnn_layer_sizes":[30]}' \--primer_midi=$PRIMER_PATH \--output_dir=/home/liukun/TensorFlow/magenta/music/generate \--num_steps=64 \--num_outputs=3
.
├── bazel installer
│ ├── bazel
│ └── bazel-0.3.0-installer-linux-x86_64.sh
├── magenta
│ ├── 1.sh
│ ├── 1.sh~
│ ├── 2.sh
│ ├── 2.sh~
│ ├── 3.sh
│ ├── 3.sh~
│ ├── 4.sh
│ ├── 4.sh~
│ ├── bazel-bin -> /home/liukun/.cache/bazel/_bazel_liukun/ebbbbefb206fd0a3aa08c53b60fb3fee/execroot/magenta/bazel-out/local-opt/bin
│ ├── bazel-genfiles -> /home/liukun/.cache/bazel/_bazel_liukun/ebbbbefb206fd0a3aa08c53b60fb3fee/execroot/magenta/bazel-out/local-opt/genfiles
│ ├── bazel-magenta -> /home/liukun/.cache/bazel/_bazel_liukun/ebbbbefb206fd0a3aa08c53b60fb3fee/execroot/magenta
│ ├── bazel-out -> /home/liukun/.cache/bazel/_bazel_liukun/ebbbbefb206fd0a3aa08c53b60fb3fee/execroot/magenta/bazel-out
│ ├── bazel-testlogs -> /home/liukun/.cache/bazel/_bazel_liukun/ebbbbefb206fd0a3aa08c53b60fb3fee/execroot/magenta/bazel-out/local-opt/testlogs
│ ├── __init__.py
│ ├── LICENSE
│ ├── magenta
│ │ ├── 1.sh
│ │ ├── 2.sh~
│ │ ├── BUILD
│ │ ├── __init__.py
│ │ ├── __init__.pyc
│ │ ├── lib
│ │ │ ├── BUILD
│ │ │ ├── __init__.py
│ │ │ ├── __init__.pyc
│ │ │ ├── melodies_lib.py
│ │ │ ├── melodies_lib_test.py
│ │ │ ├── midi_io.py
│ │ │ ├── midi_io.pyc
│ │ │ ├── midi_io_test.py
│ │ │ ├── note_sequence_io.py
│ │ │ ├── note_sequence_io_test.py
│ │ │ ├── sequence_example_lib.py
│ │ │ ├── sequence_to_melodies.py
│ │ │ ├── sequence_to_melodies_test.py
│ │ │ └── tf_lib.py
│ │ ├── models
│ │ │ ├── attention_rnn
│ │ │ │ ├── attention_rnn_create_dataset.py
│ │ │ │ ├── attention_rnn_encoder_decoder.py
│ │ │ │ ├── attention_rnn_generate.py
│ │ │ │ ├── attention_rnn_graph.py
│ │ │ │ ├── attention_rnn_train.py
│ │ │ │ ├── BUILD
│ │ │ │ └── README.md
│ │ │ ├── basic_rnn
│ │ │ │ ├── basic_rnn_create_dataset.py
│ │ │ │ ├── basic_rnn_encoder_decoder.py
│ │ │ │ ├── basic_rnn_encoder_decoder.pyc
│ │ │ │ ├── basic_rnn_generate.py
│ │ │ │ ├── basic_rnn_graph.py
│ │ │ │ ├── basic_rnn_graph.pyc
│ │ │ │ ├── basic_rnn_train.py
│ │ │ │ ├── BUILD
│ │ │ │ ├── README.md
│ │ │ │ └── run_basic_rnn_train.sh
│ │ │ ├── lookback_rnn
│ │ │ │ ├── BUILD
│ │ │ │ ├── lookback_rnn_create_dataset.py
│ │ │ │ ├── lookback_rnn_encoder_decoder.py
│ │ │ │ ├── lookback_rnn_generate.py
│ │ │ │ ├── lookback_rnn_graph.py
│ │ │ │ ├── lookback_rnn_train.py
│ │ │ │ └── README.md
│ │ │ └── shared
│ │ │ ├── BUILD
│ │ │ ├── melody_rnn_create_dataset.py
│ │ │ ├── melody_rnn_generate.py
│ │ │ ├── melody_rnn_train.py
│ │ │ ├── primer.mid
│ │ │ └── README.md
│ │ ├── protobuf
│ │ │ ├── BUILD
│ │ │ └── music.proto
│ │ ├── reviews
│ │ │ ├── assets
│ │ │ │ ├── attention_interpolation.png
│ │ │ │ ├── attention_parameterization.png
│ │ │ │ ├── color-preserving-ny.jpg
│ │ │ │ ├── diagram.png
│ │ │ │ ├── generation.gif
│ │ │ │ ├── mnist_generation.png
│ │ │ │ ├── pixelrnn_figure6.png
│ │ │ │ ├── pixelrnn_full_context.png
│ │ │ │ ├── pixelrnn_masks_A.png
│ │ │ │ ├── pixelrnn_masks_B.png
│ │ │ │ ├── pixelrnn_masks_highlevel.png
│ │ │ │ ├── svhn_generation.png
│ │ │ │ └── tubingen-starry-night.jpg
│ │ │ ├── draw.md
│ │ │ ├── pixelrnn.md
│ │ │ ├── README.md
│ │ │ ├── styletransfer.md
│ │ │ └── summary_generation_sequences.md
│ │ ├── Rossini_barbe(2).mid
│ │ ├── Rossini_barbe(3).mid
│ │ ├── Rossini_barbe.mid
│ │ ├── scripts
│ │ │ ├── BUILD
│ │ │ ├── convert_midi_dir_to_note_sequences.py
│ │ │ └── convert_midi_dir_to_note_sequences_test.py
│ │ └── testdata
│ │ ├── BUILD
│ │ ├── example_complex.mid
│ │ ├── example.mid
│ │ └── notesequences.tfrecord
│ ├── music
│ │ ├── eval_melodies.tfrecord
│ │ ├── generate
│ │ │ ├── 2016-07-16_224233_1.mid
│ │ │ ├── 2016-07-16_224233_2.mid
│ │ │ └── 2016-07-16_224233_3.mid
│ │ ├── origional
│ │ │ └── Canon.mid
│ │ └── train
│ │ ├── basket.mid
│ │ ├── detective.mid
│ │ ├── notesequences.tfrecord
│ │ └── training_melodies.tfrecord
│ ├── pretty_midi.BUILD
│ ├── python_midi.BUILD
│ ├── README.md
│ ├── six.BUILD
│ ├── tools
│ │ └── bazel.rc
│ ├── util
│ │ └── python
│ │ └── BUILD
│ ├── WORKSPACE
│ └── WORKSPACE~
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:【Magenta 项目初探】手把手教你用Tensorflow神经网络创造音乐 - Python技术站