Pytorch实现将模型的所有参数的梯度清0

在PyTorch中,我们可以使用zero_grad()方法将模型的所有参数的梯度清零。以下是两个示例说明。

示例1:手写数字识别

import torch
import torch.nn as nn
import torchvision.datasets as dsets
import torchvision.transforms as transforms

# 加载MNIST数据集
train_dataset = dsets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True)
test_dataset = dsets.MNIST(root='./data', train=False, transform=transforms.ToTensor())

# 加载数据集
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=100, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=100, shuffle=False)

# 定义模型
model = nn.Sequential(
    nn.Linear(784, 500),
    nn.ReLU(),
    nn.Linear(500, 10)
)

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)

# 训练模型
total_step = len(train_loader)
for epoch in range(10):
    for i, (images, labels) in enumerate(train_loader):
        images = images.reshape(-1, 28*28)

        # 前向传播
        outputs = model(images)
        loss = criterion(outputs, labels)

        # 反向传播和优化
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if (i+1) % 100 == 0:
            print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, 10, i+1, total_step, loss.item()))

        # 清零梯度
        optimizer.zero_grad()

在这个示例中,我们首先加载了MNIST数据集。然后,我们定义了一个名为model的神经网络模型,并定义了一个名为criterion的损失函数和一个名为optimizer的优化器。然后,我们使用训练数据对模型进行了训练,并在每个epoch结束时输出损失值。在每个batch结束时,我们使用zero_grad()方法将模型的所有参数的梯度清零。

示例2:猫狗分类

import torch
import torch.nn as nn
import torchvision.datasets as dsets
import torchvision.transforms as transforms
import torchvision.models as models

# 加载数据集
train_dataset = dsets.ImageFolder(root='./data/train', transform=transforms.Compose([
    transforms.Resize(224),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
]))
test_dataset = dsets.ImageFolder(root='./data/test', transform=transforms.Compose([
    transforms.Resize(224),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
]))
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=100, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=100, shuffle=False)

# 加载预训练模型
model = models.resnet18(pretrained=True)
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, 2)

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.001)

# 训练模型
total_step = len(train_loader)
for epoch in range(10):
    for i, (images, labels) in enumerate(train_loader):
        # 前向传播
        outputs = model(images)
        loss = criterion(outputs, labels)

        # 反向传播和优化
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if (i+1) % 100 == 0:
            print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, 10, i+1, total_step, loss.item()))

        # 清零梯度
        optimizer.zero_grad()

在这个示例中,我们首先加载了猫狗分类数据集。然后,我们加载了一个训练的ResNet18模型,并将其输出层替换为一个名为fc的线性层。然后,我们定义了一个名为criterion的损失函数和一个名为optimizer的优化器。然后,我们使用训练数据对模型进行了训练,并在每个epoch结束时输出损失值。在每个batch结束时,我们使用zero_grad()方法将模型的所有参数的梯度清零。

总之,使用zero_grad()方法可以清零模型的所有参数的梯度,这是在训练模型时非常重要的步骤。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Pytorch实现将模型的所有参数的梯度清0 - Python技术站

(0)
上一篇 2023年5月16日
下一篇 2023年5月16日

相关文章

  • Lubuntu安装Pytorch

    PyTorch官方对于PyTorch的定位为: 一个使用GPU加速的numpy替换库 一个深度学习研究平台,提高最大灵活度和速度 具体点来讲, PyTorch是一个Python包,是Torch在Python上的衍生,原先的Torch是用Lua语言写的,虽然效率高,但是普及度不够,社区不够大,改成Python后,受众范围广泛了许多。并且有FaceBook这样的…

    2023年4月7日
    00
  • pytorch中的pack_padded_sequence和pad_packed_sequence用法

    pack_padded_sequence是将句子按照batch优先的原则记录每个句子的词,变化为不定长tensor,方便计算损失函数。 pad_packed_sequence是将pack_padded_sequence生成的结构转化为原先的结构,定长的tensor。 其中test.txt的内容 As they sat in a nice coffee sho…

    PyTorch 2023年4月7日
    00
  • pytorch1.0实现RNN for Regression

    import torch from torch import nn import numpy as np import matplotlib.pyplot as plt # 超参数 # Hyper Parameters TIME_STEP = 10 # rnn time step INPUT_SIZE = 1 # rnn input size LR = 0.…

    PyTorch 2023年4月6日
    00
  • M1 mac安装PyTorch的实现步骤

    M1 Mac是苹果公司推出的基于ARM架构的芯片,与传统的x86架构有所不同。因此,在M1 Mac上安装PyTorch需要一些特殊的步骤。本文将介绍M1 Mac上安装PyTorch的实现步骤,并提供两个示例说明。 步骤一:安装Miniforge Miniforge是一个轻量级的Anaconda发行版,专门为ARM架构的Mac电脑设计。我们可以使用Minifo…

    PyTorch 2023年5月15日
    00
  • Pytorch 搭建分类回归神经网络并用GPU进行加速的例子

    PyTorch搭建分类回归神经网络并用GPU进行加速的例子 在本文中,我们将介绍如何使用PyTorch搭建分类回归神经网络,并使用GPU进行加速。本文将包含两个示例说明。 示例一:使用PyTorch搭建分类神经网络 我们可以使用PyTorch搭建分类神经网络。示例代码如下: import torch import torch.nn as nn import …

    PyTorch 2023年5月15日
    00
  • PyTorch实现简单的变分自动编码器VAE

          在上一篇博客中我们介绍并实现了自动编码器,本文将用PyTorch实现变分自动编码器(Variational AutoEncoder, VAE)。自动变分编码器原理与一般的自动编码器的区别在于需要在编码过程增加一点限制,迫使它生成的隐含向量能够粗略的遵循标准正态分布。这样一来,当需要生成一张新图片时,只需要给解码器一个标准正态分布的隐含随机向量就可…

    PyTorch 2023年4月8日
    00
  • 如何入门Pytorch之一:Pytorch基本知识介绍

    前言        PyTorch和Tensorflow是目前最为火热的两大深度学习框架,Tensorflow主要用户群在于工业界,而PyTorch主要用户分布在学术界。目前视觉三大顶会的论文大多都是基于PyTorch,如何快速入门PyTorch成了当务之急。 正文       本着循序渐进的原则,我会依次从易到难的内容进行介绍,并采用定期更新的方式来补充该…

    2023年4月6日
    00
  • pytorch 多GPU 训练

    import osos.environ[‘CUDA_VISIBLE_DEVICES’] = ‘0, 1, 2’import torch   #注意以上两行先后顺序不可弄错   device = torch.device(‘cuda’) model = DataParallel(model)model.to(device)   这样模型就会在gpu 0, 1,…

    PyTorch 2023年4月7日
    00
合作推广
合作推广
分享本页
返回顶部