自定义层需要继承tf.keras.layers.Layer类,重写init,build,call
-
__init__,执行与输入无关的初始化
-
build,了解输入张量的形状,定义需要什么输入
-
call,进行正向计算
class MyDense(tf.keras.layers.Layer):
def __init__(self,units): # units 神经元个数
super().__init__() # 必须写
self.units = units
def build(self,input_shape):
self.w = self.add_variable(
name="w",
shape=[input_shape[-1],self.units],
initializer = tf.initializers.RandomNormal()
)
self.b = self.add_variable(name="b",shape=[self.units],initializer = tf.initializers.Zeros()) # b一般是全0
def call(self,input):
# wx+b
return input @ self.w + self.b
return tf.nn.relu(input @ self.w + self.b)
自定义模型类
class MyModel(tf.keras.Model):
def __init__(self):
super().__init__()
self.fc1 = MyDense(512)
self.fc2 = MyDense(256)
self.fc3 = MyDense(128)
self.fc4 = MyDense(10)
def call(self,input):
self.fc1.out = self.fc1(input)
self.fc2.out = self.fc2(self.fc1.out)
self.fc3.out = self.fc3(self.fc2.out)
self.fc4.out = self.fc4(self.fc3.out)
return self.fc4.out
myModel = MyModel()
myModel.build(input_shape=(None,784))
myModel.summary()
注:
# 模型保存
# 1,保存模型
# model.save("xxx.h5")
# tensorflow.keras.models.load_model("xxxx.h5")
# 2,保存权重参数
# model.save_weights("xxxx.ckpt")
# model.load_weights("xxxx.ckpt")
# 3,save_model 此时保存的模型具有平台无关性,移植性好 1.15及之后版本
# tensorflow.keras.models.save_model(model,"foldername") 生成文件夹,里面有pb文件
# tensorflow.keras.models.load_model(“foldername”)
# 此时只导入的只有model结构与weight参数 model.compile还需要自己写
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:tensorflow自定义网络结构 - Python技术站