Kubernetes集群调度增强之超容量扩容

作者:京东科技 徐宪章

1 什么是超容量扩容

超容量扩容功能,是指预先调度一定数量的工作节点,当业务高峰期或者集群整体负载较高时,可以使应用不必等待集群工作节点扩容,从而迅速完成应用横向扩容。通常情况下HPA、ClusterAutosacler和超容量扩容同时使用以满足负载敏感度高的业务场景。

超容量扩容功能是通过K8S应用优先级设置和ClusterAutosaler共同作用实现的,通过调整低优先级空载应用的数量,使集群已调度资源保持在较高的状态,当其他高优先级应用因为HPA或者手动调整应用分片数量时,可以通过驱逐空载的方式腾空调度资源却保高优先级应用可以在第一时间调度并创建。当空载应用从被驱逐转变为等到状态时,ClusterAutosaler此时对集群机型扩容,确保下次高优先级应用调度时,有足够的空载应用可以被驱逐。

超容量扩容功能的核心为OverprovisionAutoscaler(超容量扩容)和ClusterAutosaler(集群自动扩容),两者都需要通过不断调整参数配置去适配多重业务需求需求。

超容量扩容功能在一定程度上降低了资源使用饱和度,通过增加成本提高了集群和应用的稳定性,实际业务场景中需要根据需求进行取舍并合理配置。

2 什么情况下需要使用超容量扩容

当集群值开启Hpa和Autoscaler时,在发生节点扩容的情况下,应用调度时间通常为4-12分钟,主要取决于创建工作节点资源以及工作节点从加入集群到Ready的总耗时。以下为最佳和最差效率分析

最佳案例场景-4分钟

• 30秒 - 目标指标值更新:30-60秒

• 30秒 - HPA检查指标值:30秒 - >30秒 - HPA检查指标值:30秒 - >

• <2秒 - Pods创建之后进入pending状态<2秒 -Pods创建之后进入pending状态

• <2秒 - CA看到pending状态的pods,之后调用来创建node 1秒<2秒 -CA看到pending状态的pods,之后调用来创建node 1秒

• 3分钟 - cloud provider创建工作节点,之后加入k8s之后等待node变成ready

最糟糕的情况 - 12分钟

• 60 秒 —目标指标值更新

• 30 秒 — HPA检查指标值

• < 2 秒 — Pods创建之后进入pending状态

• < 2 秒 —CA看到pending状态的pods,之后调用来创建node 1秒

• 10 分钟 — cloud provider创建工作节点,之后加入k8s之后等待node变成ready

两种场景下,创建工作节点耗时占比超过75%,如果可以降低或者完全不考虑该时间,将大大提高应用扩容速度,配合超容量扩容功能可以大大增强集群和业务稳定性。超容量扩容主要用于对应用负载敏感度较高的业务场景

  1. 大促备战

  2. 流计算/实时计算

  3. Devops系统

  4. 其他调度频繁的业务场景

3 如何开启超容量扩容

超容量扩容功能以ClusterAutoscaler为基础,配合OverprovisionAutoscaler实现。以京东公有云Kubernetes容器服务为例

3.1 开启ClusterAutoscaler

https://cns-console.jdcloud.com/host/nodeGroups/list

• 进入 “kubernetes容器服务”->“工作节点组”

• 选择需要对应节点组,点击开启自动伸缩

• 设置节点数量区间,并点击确定

Kubernetes集群调度增强之超容量扩容

3.2 部署OverprovisionAutoscaler

1 部署控制器及配置

apiVersion: apps/v1
kind: Deployment
metadata:
  name: overprovisioning-autoscaler
  namespace: default
  labels:
    app: overprovisioning-autoscaler
    owner: cluster-autoscaler-overprovisioning
spec:
  selector:
    matchLabels:
      app: overprovisioning-autoscaler
      owner: cluster-autoscaler-overprovisioning
  replicas: 1
  template:
    metadata:
      labels:
        app: overprovisioning-autoscaler
        owner: cluster-autoscaler-overprovisioning
    spec:
      serviceAccountName: cluster-proportional-autoscaler
      containers:
        - image: jdcloud-cn-north-1.jcr.service.jdcloud.com/k8s/cluster-proportional-autoscaler:v1.16.3
          name: proportional-autoscaler
          command:
            - /autoscaler
            - --namespace=default
            ## 注意这里需要根据需要指定上述的configmap的名称 
            ## /overprovisioning-autoscaler-ladder/overprovisioning-autoscaler-linear
            - --configmap=overprovisioning-autoscaler-{provision-mode}
            ## 预热集群应用(类型)/ 名称,基准应用和空值应用需要在同一个命名空间下
            - --target=deployment/overprovisioning
            - --logtostderr=true
            - --v=2
          imagePullPolicy: IfNotPresent
          volumeMounts:
            - name: host-time
              mountPath: /etc/localtime
      volumes:
        - name: host-time
          hostPath:
            path: /etc/localtime
---
kind: ServiceAccount
apiVersion: v1
metadata:
  name: cluster-proportional-autoscaler
  namespace: default
---
kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: cluster-proportional-autoscaler
rules:
  - apiGroups: [""]
    resources: ["nodes"]
    verbs: ["list", "watch"]
  - apiGroups: [""]
    resources: ["replicationcontrollers/scale"]
    verbs: ["get", "update"]
  - apiGroups: ["extensions","apps"]
    resources: ["deployments/scale", "replicasets/scale","deployments","replicasets"]
    verbs: ["get", "update"]
  - apiGroups: [""]
    resources: ["configmaps"]
    verbs: ["get", "create"]
---
kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: cluster-proportional-autoscaler
subjects:
  - kind: ServiceAccount
    name: cluster-proportional-autoscaler
    namespace: default
roleRef:
  kind: ClusterRole
  name: cluster-proportional-autoscaler
  apiGroup: rbac.authorization.k8s.io
---
apiVersion: scheduling.k8s.io/v1
kind: PriorityClass
metadata:
  name: overprovisioning
value: -1
globalDefault: false
description: "Priority class used by overprovisioning."


2 部署空载应用

apiVersion: apps/v1
kind: Deployment
metadata:
  name: overprovisioning
  namespace: default
  labels:
    app: overprovisioning
    owner: cluster-autoscaler-overprovisioning
spec:
  replicas: 1
  selector:
    matchLabels:
      app: overprovisioning
      owner: cluster-autoscaler-overprovisioning
  template:
    metadata:
      annotations:
        autoscaler.jke.jdcloud.com/overprovisioning: "reserve-pod"
      labels:
        app: overprovisioning
        owner: cluster-autoscaler-overprovisioning
    spec:
      priorityClassName: overprovisioning
      containers:
        - name: reserve-resources
          image: jdcloud-cn-east-2.jcr.service.jdcloud.com/k8s/pause-amd64:3.1
          resources:
            requests:
              ## 根据预热预期设置配置的分片数量及单分片所需资源
              cpu: 7
          imagePullPolicy: IfNotPresent


3.3 验证超容量扩容功能是否正常

1 验证Autoscaler

• 查看autoscaler控制器是否Running

• 不断创建测试应用,应用需求资源略微小于节点组单节点可调度资源

• 观察集群节点状态,当资源不足导致pod 等待中状态时,autocalser是否会按照预设(扩容等待、扩容冷却、最大节点数量等)进行扩容

• 开启集群自动缩容,删除测试应用,观察集群节点资源Request到达阈值后是否发生缩容。

2 验证OverprovisionAutoscaler

• 查看OverprovisionAutoscaler控制器是否Running

• 不断创建测试应用,当发生autoscaler后,空载应用数量是否会根据配置发生变化

• 当业务应用pendding后,空载应用是否会发生驱逐,并调度业务应用

4 设置OverprovisionAutoscaler及ClusterAutoscaler参数

4.1 配置ClusterAutoscaler

1 ca参数说明

参数名称 默认值 参数说明
scan_interval 20s How often cluster is reevaluated for scale up or down
max_nodes_total 0 Maximum number of nodes in all node groups
estimator binpacking Type of resource estimator to be used in scale up.
expander least-waste Type of node group expander to be used in scale up
max_empty_bulk_delete 15 Maximum number of empty nodes that can be deleted at the same time
max_graceful_termination_sec 600 Maximum number of seconds CA waits for pod termination when trying to scale down a node
max_total_unready_percentage 45 Maximum percentage of unready nodes in the cluster. After this is exceeded, CA halts operations
ok_total_unready_count 100 Number of allowed unready nodes, irrespective of max-total-unready-percentage
max_node_provision_time 900s Maximum time CA waits for node to be provisioned
scale_down_enabled true Should CA scale down the cluster
scale_down_delay_after_add 600s How long after scale up that scale down evaluation resumes
scale_down_delay_after_delete 10s How long after node deletion that scale down evaluation resumes, defaults to scanInterval
scale_down_delay_after_failure 180s How long after scale down failure that scale down evaluation resumes
scale_down_unneeded_time 600s How long a node should be unneeded before it is eligible for scale down
scale_down_unready_time 1200s How long an unready node should be unneeded before it is eligible for scale down
scale_down_utilization_threshold 0.5 Node utilization level, defined as sum of requested resources divided by capacity, below which a node can be considered for scale down
balance_similar_node_groups false Detect similar node groups and balance the number of nodes between them
node_autoprovisioning_enabled false Should CA autoprovision node groups when needed
max_autoprovisioned_node_group_count 15 The maximum number of autoprovisioned groups in the cluster
skip_nodes_with_system_pods true If true cluster autoscaler will never delete nodes with pods from kube-system (except for DaemonSet or mirror pods)
skip_nodes_with_local_storage true If true cluster autoscaler will never delete nodes with pods with local storage, e.g. EmptyDir or HostPath', NOW(), NOW(), 1);

2 推荐配置

# 其他保持默认
scan_interval=10s
max_node_provision_time=180s
scale_down_delay_after_add=180s
scale_down_delay_after_delete=180s
scale_down_unneeded_time=300s
scale_down_utilization_threshold=0.4


4.2 配置OverprovisionAutoscaler

OverprovisionAutoscaler的配置有线性配置和阶梯配置两种方式,两种配置方式只能选择一种.

1 线性配置(ladder)

线性配置,通过配置总体CPU核数以及节点数量和空载应用数量的比例实现线性资源预留,空载应用数量总是和CPU总量以及节点数量成正比,精度会根据空载应用CPU资源request变化,request值越小,精度月高,当配置发生冲突时,取符合线性关系的空载应用数量最大值.

节点数量满足配置中min和max的区间

preventSinglePointFailure,当为true时,Running状态的空载应用分片数满足线性关系;当为false时,Failer/Running状态的空载应用分片数满足线性关系

includeUnschedulableNodes,是否考虑不可调度节点

kind: ConfigMap
apiVersion: v1
metadata:
  name: overprovisioning-autoscaler-linear
  namespace: default
data:
  linear: |-
    {
      "coresPerReplica": 2,
      "nodesPerReplica": 1,
      "min": 1,
      "max": 100,
      "includeUnschedulableNodes": false,
      "preventSinglePointFailure": true
    }


2 阶梯配置(linear)

阶梯配置,通过配置总体CPU核数或者节点数量和空载应用数量的矩阵实现阶梯状资源预留,空载应用数量符合CPU总量以及节点数量的分布状态,当配置发生冲突时,取符合区间分布的空载应用数量最大值

kind: ConfigMap
apiVersion: v1
metadata:
  name: overprovisioning-autoscaler-ladder
  namespace: default
data:
  ladder: |-
    {
      "coresToReplicas":
      [
        [ 1,1 ],
        [ 50,3 ],
        [ 200,5 ],
        [ 500,7 ]
      ],
      "nodesToReplicas":
      [
        [ 1,1 ],
        [ 3,4 ],
        [ 10,5 ],
        [ 50,20 ],
        [ 100,120 ],
        [ 150,120 ]
      ]
    }


原文链接:https://www.cnblogs.com/Jcloud/p/17329497.html

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Kubernetes集群调度增强之超容量扩容 - Python技术站

(0)
上一篇 2023年4月18日
下一篇 2023年4月19日

相关文章

  • 云计算之路-阿里云上:OCS问题的进展以及11:30-11:50遇到的问题

    (上图是今天出问题期间Web服务器性能监控图,紫色表示的是Request Execution Time) 昨天我们发布了一篇博客分享了我们这两天遇到的OCS(开放缓存服务)问题,详见云计算之路-阿里云上:愚人节被阿里云OCS愚。 后来,阿里云确认了问题的原因:在OCS升级过程中造成了写入的缓存数据过期时间丢失,只需删除这些有问题的缓存数据就不会再出现这个问题…

    云计算 2023年4月13日
    00
  • Eureka源码核心类预备知识

    Eureka源码核心类预备知识 Eureka是Netflix开源的一款服务发现框架,它可以帮助开发者实现服务的注册与发现。在使用Eureka时,需要了解一些Eureka源码核心类的预备知识。下面是一份关于Eureka源码核心类预备知识的完整攻略,包括背景介绍、Eureka源码核心类的预备知识、示例说明等。 1. 背景介绍 随着微服务架构的流行,服务的注册与发…

    云计算 2023年5月16日
    00
  • 计算点云法向量

    1.先mark一个文件操作:遍历(或者迭代遍历)指定目录,boost::filesystem可真好用 1 for (const auto& it : boost::filesystem::directory_iterator(“/your/path”)) { 2 if (it.path().extension() == “.pcd”) { 3 std…

    云计算 2023年4月11日
    00
  • 基于Python实现个人手机定位分析

    当尝试使用Python实现手机定位分析时,可遵循以下步骤: 步骤一:获取数据 首先,需要搜集用户手机的位置数据。最可能的方式是从WiFi和蜂窝数据中获取。可通过以下资源来完成此任务: GeoLife GPS Trajectories dataset (微软提供的免费GPS路线数据集,其中包含超过3万个用户在中国大陆的GPS行程)。 open WiFi 和 o…

    云计算 2023年5月18日
    00
  • windows第七层负载均衡_基于IIS的ARR负载均衡详解

    Windows第七层负载均衡_基于IIS的ARR负载均衡详解 什么是第七层负载均衡 第七层负载均衡指的是网络七层模型中的应用层负载均衡,其可以针对应用层协议对请求进行负载均衡。 IIS的ARR模块 IIS的ARR模块是一款基于IIS的第七层负载均衡模块,其可以实现将请求均衡转发到服务器集群,并且支持会话保持、权重路由等负载均衡策略。 安装IIS的ARR模块步…

    云计算 2023年5月17日
    00
  • ASP.NET Core 6.0对热重载的支持实例详解

    ASP.NET Core 6.0对热重载的支持实例详解 ASP.NET Core 6.0是微软推出的一款全新的Web应用程序框架,它提供了许多新的功能和改进,其中包括对热重载的支持。本文将提供一个完整的攻略,包括如何创建ASP.NET Core 6.0项目、如何使用热重载、如何使用示例代码等内容。 创建ASP.NET Core 6.0项目 在开始实现热重载的…

    云计算 2023年5月16日
    00
  • Javaweb 500 服务器内部错误的解决

    下面我就为大家详细讲解解决“Javaweb 500 服务器内部错误”的完整攻略,包含以下步骤: 1. 确认错误信息 首先我们需要明确出现了哪些具体的错误信息,这有助于我们更准确地定位和解决问题。可以查看服务器日志文件、控制台输出信息等。 2. 检查代码中的错误 接下来,我们可以检查一下代码中是否存在一些明显的问题,比如语法错误、空指针异常、数据库连接错误等等…

    云计算 2023年5月17日
    00
  • 云计算:SaaS,IaaS,PaaS 通俗解释

      云计算生意三个范畴:   1. SaaS(Software as a Service) AMAZON搞出了他们的云计算服务,把自己闲置的计算资源出租给其他人来使用。有的客户什么都不懂,你把计算资源直接给他,他毛也不会用,于是有的云计算提供商就直接把一些软件运行在自己的集群上,这些客户直接上网使用这些软件就好啦,这就是SaaS(Software as a …

    云计算 2023年4月12日
    00
合作推广
合作推广
分享本页
返回顶部