Python图像处理丨基于K-Means聚类的图像区域分割

摘要:本篇文章主要讲解基于理论的图像分割方法,通过K-Means聚类算法实现图像分割或颜色分层处理。

本文分享自华为云社区《[Python图像处理] 十九.图像分割之基于K-Means聚类的区域分割》,作者: eastmount。

本篇文章主要讲解基于理论的图像分割方法,通过K-Means聚类算法实现图像分割或颜色分层处理。基础性文章,希望对你有所帮助。

  • 一.K-Means原理
  • 二.K-Means聚类分割灰度图像
  • 三.K-Means聚类对比分割彩色图像

注意 :该部分知识均为杨秀璋查阅资料撰写,未经授权禁止转载,谢谢!!如果有问题随时私聊我,只望您能从这个系列中学到知识,一起加油喔~

该系列在github所有源代码:https://github.com/eastmountyxz/ImageProcessing-Python

一.K-Means聚类原理

第一部分知识主要参考自己的新书《Python网络数据爬取及分析从入门到精通(分析篇)》和之前的博客 [Python数据挖掘课程] 二.Kmeans聚类数据分析

K-Means聚类是最常用的聚类算法,最初起源于信号处理,其目标是将数据点划分为K个类簇,找到每个簇的中心并使其度量最小化。该算法的最大优点是简单、便于理解,运算速度较快,缺点是只能应用于连续型数据,并且要在聚类前指定聚集的类簇数。

下面是K-Means聚类算法的分析流程,步骤如下:

  • 第一步,确定K值,即将数据集聚集成K个类簇或小组。
  • 第二步,从数据集中随机选择K个数据点作为质心(Centroid)或数据中心。
  • 第三步,分别计算每个点到每个质心之间的距离,并将每个点划分到离最近质心的小组,跟定了那个质心。
  • 第四步,当每个质心都聚集了一些点后,重新定义算法选出新的质心。
  • 第五步,比较新的质心和老的质心,如果新质心和老质心之间的距离小于某一个阈值,则表示重新计算的质心位置变化不大,收敛稳定,则认为聚类已经达到了期望的结果,算法终止。
  • 第六步,如果新的质心和老的质心变化很大,即距离大于阈值,则继续迭代执行第三步到第五步,直到算法终止。

下图是对身高和体重进行聚类的算法,将数据集的人群聚集成三类。

Python图像处理丨基于K-Means聚类的图像区域分割

二.K-Means聚类分割灰度图像

在图像处理中,通过K-Means聚类算法可以实现图像分割、图像聚类、图像识别等操作,本小节主要用来进行图像颜色分割。假设存在一张100×100像素的灰度图像,它由10000个RGB灰度级组成,我们通过K-Means可以将这些像素点聚类成K个簇,然后使用每个簇内的质心点来替换簇内所有的像素点,这样就能实现在不改变分辨率的情况下量化压缩图像颜色,实现图像颜色层级分割。

在OpenCV中,Kmeans()函数原型如下所示:

retval, bestLabels, centers = kmeans(data, K, bestLabels, criteria, attempts, flags[, centers])

  • data表示聚类数据,最好是np.flloat32类型的N维点集
  • K表示聚类类簇数
  • bestLabels表示输出的整数数组,用于存储每个样本的聚类标签索引
  • criteria表示算法终止条件,即最大迭代次数或所需精度。在某些迭代中,一旦每个簇中心的移动小于criteria.epsilon,算法就会停止
  • attempts表示重复试验kmeans算法的次数,算法返回产生最佳紧凑性的标签
  • flags表示初始中心的选择,两种方法是cv2.KMEANS_PP_CENTERS ;和cv2.KMEANS_RANDOM_CENTERS
  • centers表示集群中心的输出矩阵,每个集群中心为一行数据

下面使用该方法对灰度图像颜色进行分割处理,需要注意,在进行K-Means聚类操作之前,需要将RGB像素点转换为一维的数组,再将各形式的颜色聚集在一起,形成最终的颜色分割。

# coding: utf-8
import cv2
import numpy as np
import matplotlib.pyplot as plt
#读取原始图像灰度颜色
img = cv2.imread('scenery.png', 0) 
print img.shape
#获取图像高度、宽度
rows, cols = img.shape[:]
#图像二维像素转换为一维
data = img.reshape((rows * cols, 1))
data = np.float32(data)
#定义中心 (type,max_iter,epsilon)
criteria = (cv2.TERM_CRITERIA_EPS +
            cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
#设置标签
flags = cv2.KMEANS_RANDOM_CENTERS
#K-Means聚类 聚集成4类
compactness, labels, centers = cv2.kmeans(data, 4, None, criteria, 10, flags)
#生成最终图像
dst = labels.reshape((img.shape[0], img.shape[1]))
#用来正常显示中文标签
plt.rcParams['font.sans-serif']=['SimHei']
#显示图像
titles = [u'原始图像', u'聚类图像'] 
images = [img, dst] 
for i in xrange(2): 
 plt.subplot(1,2,i+1), plt.imshow(images[i], 'gray'), 
 plt.title(titles[i]) 
 plt.xticks([]),plt.yticks([]) 
plt.show()

输出结果如图所示,左边为灰度图像,右边为K-Means聚类后的图像,它将灰度级聚集成四个层级,相似的颜色或区域聚集在一起。

Python图像处理丨基于K-Means聚类的图像区域分割

三.K-Means聚类对比分割彩色图像

下面代码是对彩色图像进行颜色分割处理,它将彩色图像聚集成2类、4类和64类。

# coding: utf-8
import cv2
import numpy as np
import matplotlib.pyplot as plt
#读取原始图像
img = cv2.imread('scenery.png') 
print img.shape
#图像二维像素转换为一维
data = img.reshape((-1,3))
data = np.float32(data)
#定义中心 (type,max_iter,epsilon)
criteria = (cv2.TERM_CRITERIA_EPS +
            cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
#设置标签
flags = cv2.KMEANS_RANDOM_CENTERS
#K-Means聚类 聚集成2类
compactness, labels2, centers2 = cv2.kmeans(data, 2, None, criteria, 10, flags)
#K-Means聚类 聚集成4类
compactness, labels4, centers4 = cv2.kmeans(data, 4, None, criteria, 10, flags)
#K-Means聚类 聚集成8类
compactness, labels8, centers8 = cv2.kmeans(data, 8, None, criteria, 10, flags)
#K-Means聚类 聚集成16类
compactness, labels16, centers16 = cv2.kmeans(data, 16, None, criteria, 10, flags)
#K-Means聚类 聚集成64类
compactness, labels64, centers64 = cv2.kmeans(data, 64, None, criteria, 10, flags)
#图像转换回uint8二维类型
centers2 = np.uint8(centers2)
res = centers2[labels2.flatten()]
dst2 = res.reshape((img.shape))
centers4 = np.uint8(centers4)
res = centers4[labels4.flatten()]
dst4 = res.reshape((img.shape))
centers8 = np.uint8(centers8)
res = centers8[labels8.flatten()]
dst8 = res.reshape((img.shape))
centers16 = np.uint8(centers16)
res = centers16[labels16.flatten()]
dst16 = res.reshape((img.shape))
centers64 = np.uint8(centers64)
res = centers64[labels64.flatten()]
dst64 = res.reshape((img.shape))
#图像转换为RGB显示
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
dst2 = cv2.cvtColor(dst2, cv2.COLOR_BGR2RGB)
dst4 = cv2.cvtColor(dst4, cv2.COLOR_BGR2RGB)
dst8 = cv2.cvtColor(dst8, cv2.COLOR_BGR2RGB)
dst16 = cv2.cvtColor(dst16, cv2.COLOR_BGR2RGB)
dst64 = cv2.cvtColor(dst64, cv2.COLOR_BGR2RGB)
#用来正常显示中文标签
plt.rcParams['font.sans-serif']=['SimHei']
#显示图像
titles = [u'原始图像', u'聚类图像 K=2', u'聚类图像 K=4',
 u'聚类图像 K=8', u'聚类图像 K=16', u'聚类图像 K=64'] 
images = [img, dst2, dst4, dst8, dst16, dst64] 
for i in xrange(6): 
 plt.subplot(2,3,i+1), plt.imshow(images[i], 'gray'), 
 plt.title(titles[i]) 
 plt.xticks([]),plt.yticks([]) 
plt.show()

输出结果如下图所示,当K=2颜色聚集成两种,当K=64颜色聚集成64种。

Python图像处理丨基于K-Means聚类的图像区域分割

 

点击关注,第一时间了解华为云新鲜技术~

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Python图像处理丨基于K-Means聚类的图像区域分割 - Python技术站

(0)
上一篇 2023年4月2日 下午5:01
下一篇 2023年4月2日

相关文章

  • 人工智能打造充满创造力的新世界,华为云开发者日无锡站成功举办

    摘要:近日,华为云开发者日HDC.Cloud Day无锡站成功举行,开发者不仅聆听了华为云技术专家在生成式AI、元宇宙、AIoT、工业互联网等领域的前沿技术分享,还在KooLabs工作坊、展台等环节,亲身体验华为云产品的技术魅力。 3月21日,华为云开发者日HDC.Cloud Day无锡站成功举行,开发者不仅聆听了华为云技术专家在生成式AI、元宇宙、AIoT…

    云计算 2023年4月17日
    00
  • AIGC的阿克琉斯之踵

    摘要:现在,越来越多的企业和个人使用AIGC生成文章、图片、音乐甚至视频等内容,AIGC已经成为一种必备的工具。在游戏和原画师行业,甚至已经出现了第一批因为AI而失业的人。 本文分享自华为云社区《GPT-4发布,AIGC时代的多模态还能走多远?系列之二:AIGC的阿克琉斯之踵》,作者:ModelArts 开发 。 AIGC是继PGC(Professional…

    人工智能概论 2023年4月22日
    00
  • 云图说|云数据库GaussDB如何做到卓越性能

    摘要:对于数据库来说,性能一直被视为最关键的部分。GaussDB作为华为自主创新研发的分布式关系型数据库,那么华为云数据库GaussDB在提升数据库性能方面都有哪些黑科技呢? 本文分享自华为云社区《【云图说】第275期 云数据库GaussDB如何做到卓越性能》,作者:阅识风云。 对于数据库来说,性能一直被视为最关键的部分。GaussDB作为华为自主创新研发的…

    MySQL 2023年4月17日
    00
  • 云原生2.0网关API标准发展趋势

    摘要:Gateway API希望取代Ingress API。 本文分享自华为云社区《云原生2.0网关API标准发展趋势》,作者:华为云云原生团队 。 云原生网关API标准背景及发展现状 Gateway API是一个开源的API标准,源自Kubernetes SIG-NETWORK兴趣组。从出身角度讲,可谓根正苗红,自从开源以来备受关注,被寄予厚望。Gatew…

    云计算 2023年4月20日
    00
  • 关于数智融合,看看这20位专家都聊了什么

    摘要:由创原会与福佑卡车联合举办的2023年首场畅聊云原生活动在福佑卡车北京总部举办。 本文分享自华为云社区《畅聊云原生·第八期 | 关于数智融合,看看这20位专家都聊了什么》,作者:创原会。 畅聊云原生[第八期]探讨的话题选择了大家热议的“数智融合“,活动荣幸地邀请到福佑卡车技术合伙人陈冠岭、软通运力CTO刘会福、畅销书《人工智能产品经理》作者张竞宇、华为…

    云计算 2023年4月17日
    00
  • 云图说|图解开天企业工作台MSSE

    摘要:开天企业工作台是面向企业用户的一站式数字工作台。 本文分享自华为云社区《【开天aPaaS】图解开天企业工作台MSSE》,作者:开天aPaaS小助手。 开天企业工作台(MacroVerse SmartStage for Enterprises,MSSE)是面向企业用户的一站式数字工作台,为企业提供用户、组织、应用、授权等统一管理能力和灵活的门户编排能力,…

    云计算 2023年4月17日
    00
  • 华为云数据库首席专家谈分布式数据应用挑战和发展建议

    摘要:本文分析了分布式数据库发展情况、分布式数据库应用的主要问题,从行业应用的角度给出了分布式数据库发展的建议。 本文分享自华为云社区《数字化转型下我国分布式数据库应用挑战及发展建议》,作者:数据库领域科学家、华为云数据库GaussDB首席专家 冯柯。 当前,金融等重点行业都在进行数字化转型,而分布式数据库作为数据承载工具,为数字化转型提供了有力的支撑。分布…

    MySQL 2023年5月9日
    00
  • Istio数据面新模式:Ambient Mesh技术解析

    摘要:Ambient Mesh以一种更符合大规模落地要求的形态出现,克服了大多数Sidecar模式的固有缺陷,让用户无需再感知网格相关组件,真正将网格下沉为基础设施。 本文分享自华为云社区《华为云云原生团队:Istio数据面新模式 Ambient Mesh技术解析》,作者: 云容器大未来。 如果说在以Kubernetes为基础构建起的云原生世界里,哪种设计模…

    云计算 2023年5月6日
    00
合作推广
合作推广
分享本页
返回顶部