由于某个github只开源了测试代码,所以训练代码需要自己写
版本keras,tensorflow
# import src.modelCore as modelCore from src.modelCore import create_model from keras.optimizers import SGD from keras.preprocessing.image import ImageDataGenerator import tensorflow as tf import keras from keras.callbacks import ModelCheckpoint config = tf.ConfigProto() config.gpu_options.allow_growth = True # TensorFlow按需分配显存 config.gpu_options.per_process_gpu_memory_fraction = 0.5 # 指定显存分配比例 keras.backend.tensorflow_backend.set_session(tf.Session(config=config)) # 加载模型 def load_pretrain_model_by_index(pretrain_index): if pretrain_index == 4: IMC_model_idx, freeze_featex, window_size_list = 2, False, [7, 15, 31] else: IMC_model_idx, freeze_featex, window_size_list = pretrain_index, False, [7, 15, 31, 63] single_gpu_model = create_model(IMC_model_idx, freeze_featex, window_size_list) # weight_file = "{}/ManTraNet_Ptrain{}.h5".format(model_dir, pretrain_index ) # assert os.path.isfile(weight_file), "ERROR: fail to locate the pretrained weight file" # single_gpu_model.load_weights( weight_file ) return single_gpu_model def trainGenerator(batch_size, train_path, image_folder, mask_folder, aug_dict, image_color_mode="rgb", mask_color_mode="grayscale", image_save_prefix="image", mask_save_prefix="mask", flag_multi_class=False, num_class=2, save_to_dir=None, target_size=(256, 256), seed=1): ''' can generate image and mask at the same time use the same seed for image_datagen and mask_datagen to ensure the transformation for image and mask is the same if you want to visualize the results of generator, set save_to_dir = "your path" ''' image_datagen = ImageDataGenerator(**aug_dict) mask_datagen = ImageDataGenerator(**aug_dict) image_generator = image_datagen.flow_from_directory( train_path, # 训练数据文件夹路径 classes=[image_folder], # 类别文件夹,对哪一个类进行增强 class_mode=None, # 不返回标签 color_mode=image_color_mode, # 灰度,单通道模式 # target_size=target_size, # 转换后的目标图片大小 batch_size=batch_size, # 每次产生的(进行转换的)图片张数 save_to_dir=save_to_dir, # 保存的图片路径 save_prefix=image_save_prefix, # 生成图片的前缀,仅当提供save_to_dir时有效 seed=seed) mask_generator = mask_datagen.flow_from_directory( train_path, classes=[mask_folder], class_mode=None, color_mode=mask_color_mode, # target_size=target_size, batch_size=batch_size, save_to_dir=save_to_dir, save_prefix=mask_save_prefix, seed=seed) train_generator = zip(image_generator, mask_generator) # 组合成一个生成器 for (img, mask) in train_generator: # 由于batch是2,所以一次返回两张,即img是一个2张灰度图片的数组,[2,256,256] # img, mask = adjustData(img, mask, flag_multi_class, num_class) # 返回的img依旧是[2,256,256] yield (img, mask) manTraNet = load_pretrain_model_by_index(4) sgd = SGD(0.01, 0, 1e-6) manTraNet.compile(loss='binary_crossentropy', optimizer=sgd, metrics=['accuracy']) train_path = r"C:\Users\DNY-006\Desktop\s2_data\s2_data\data" mask_path = r"C:\Users\DNY-006\Desktop\s2_data\s2_data\data\train_mask" # img_train, mask_train = geneTrainNpy(train_path, mask_path) data_gen_args = dict(rotation_range=0.2, #整数。随机旋转的度数范围。 width_shift_range=0.05, #浮点数、一维数组或整数 height_shift_range=0.05, #浮点数。剪切强度(以弧度逆时针方向剪切角度)。 shear_range=0.05, zoom_range=0.05, #浮点数 或 [lower, upper]。随机缩放范围 horizontal_flip=True, fill_mode='nearest') train_generator = trainGenerator(1,train_path,'1111','train_mask',data_gen_args,save_to_dir = None) # 保存训练的模型参数到指定的文件夹,格式为.hdf5; 检测的值是'loss'使其更小。 model_checkpoint = ModelCheckpoint('ManTraNet_owndata.hdf5', monitor='loss',verbose=1, save_best_only=True) # manTraNet.fit(img_train, mask_train, epochs=50, batch_size=32, shuffle=True, verbose=1, validation_split=0.3) manTraNet.fit_generator(train_generator,steps_per_epoch=1000,epochs=60,callbacks=[model_checkpoint])#validation_data=validation_generator, validation_steps=200)# import src.modelCore as modelCore from src.modelCore import create_model from keras.optimizers import SGD from keras.preprocessing.image import ImageDataGenerator import tensorflow as tf import keras from keras.callbacks import ModelCheckpoint config = tf.ConfigProto() config.gpu_options.allow_growth = True # TensorFlow按需分配显存 config.gpu_options.per_process_gpu_memory_fraction = 0.5 # 指定显存分配比例 keras.backend.tensorflow_backend.set_session(tf.Session(config=config)) # 加载模型 def load_pretrain_model_by_index(pretrain_index): if pretrain_index == 4: IMC_model_idx, freeze_featex, window_size_list = 2, False, [7, 15, 31] else: IMC_model_idx, freeze_featex, window_size_list = pretrain_index, False, [7, 15, 31, 63] single_gpu_model = create_model(IMC_model_idx, freeze_featex, window_size_list) # weight_file = "{}/ManTraNet_Ptrain{}.h5".format(model_dir, pretrain_index ) # assert os.path.isfile(weight_file), "ERROR: fail to locate the pretrained weight file" # single_gpu_model.load_weights( weight_file ) return single_gpu_model def trainGenerator(batch_size, train_path, image_folder, mask_folder, aug_dict, image_color_mode="rgb", mask_color_mode="grayscale", image_save_prefix="image", mask_save_prefix="mask", flag_multi_class=False, num_class=2, save_to_dir=None, target_size=(256, 256), seed=1): ''' can generate image and mask at the same time use the same seed for image_datagen and mask_datagen to ensure the transformation for image and mask is the same if you want to visualize the results of generator, set save_to_dir = "your path" ''' image_datagen = ImageDataGenerator(**aug_dict) mask_datagen = ImageDataGenerator(**aug_dict) image_generator = image_datagen.flow_from_directory( train_path, # 训练数据文件夹路径 classes=[image_folder], # 类别文件夹,对哪一个类进行增强 class_mode=None, # 不返回标签 color_mode=image_color_mode, # 灰度,单通道模式 # target_size=target_size, # 转换后的目标图片大小 batch_size=batch_size, # 每次产生的(进行转换的)图片张数 save_to_dir=save_to_dir, # 保存的图片路径 save_prefix=image_save_prefix, # 生成图片的前缀,仅当提供save_to_dir时有效 seed=seed) mask_generator = mask_datagen.flow_from_directory( train_path, classes=[mask_folder], class_mode=None, color_mode=mask_color_mode, # target_size=target_size, batch_size=batch_size, save_to_dir=save_to_dir, save_prefix=mask_save_prefix, seed=seed) train_generator = zip(image_generator, mask_generator) # 组合成一个生成器 for (img, mask) in train_generator: # 由于batch是2,所以一次返回两张,即img是一个2张灰度图片的数组,[2,256,256] # img, mask = adjustData(img, mask, flag_multi_class, num_class) # 返回的img依旧是[2,256,256] yield (img, mask) manTraNet = load_pretrain_model_by_index(4) sgd = SGD(0.01, 0, 1e-6) manTraNet.compile(loss='binary_crossentropy', optimizer=sgd, metrics=['accuracy']) train_path = r"C:\Users\DNY-006\Desktop\s2_data\s2_data\data" mask_path = r"C:\Users\DNY-006\Desktop\s2_data\s2_data\data\train_mask" # img_train, mask_train = geneTrainNpy(train_path, mask_path) data_gen_args = dict(rotation_range=0.2, #整数。随机旋转的度数范围。 width_shift_range=0.05, #浮点数、一维数组或整数 height_shift_range=0.05, #浮点数。剪切强度(以弧度逆时针方向剪切角度)。 shear_range=0.05, zoom_range=0.05, #浮点数 或 [lower, upper]。随机缩放范围 horizontal_flip=True, fill_mode='nearest') train_generator = trainGenerator(1,train_path,'1111','train_mask',data_gen_args,save_to_dir = None) # 保存训练的模型参数到指定的文件夹,格式为.hdf5; 检测的值是'loss'使其更小。 model_checkpoint = ModelCheckpoint('ManTraNet_owndata.hdf5', monitor='loss',verbose=1, save_best_only=True) # manTraNet.fit(img_train, mask_train, epochs=50, batch_size=32, shuffle=True, verbose=1, validation_split=0.3) manTraNet.fit_generator(train_generator,steps_per_epoch=1000,epochs=60,callbacks=[model_checkpoint])#validation_data=validation_generator, validation_steps=200)
参考
https://blog.csdn.net/Xnion/article/details/105797671
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:keras创建自己训练代码 - Python技术站