import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import os
os.environ["CUDA_DEVICE_ORDER"] = "0,1"


mnist = input_data.read_data_sets("MNIST_data",one_hot=True)

def compute_accuracy(v_xs,v_ys):
    global prediction
    y_pre = sess.run(prediction,feed_dict ={xs:v_xs,keep_prob:1})
    correct_predicton = tf.equal(tf.argmax(y_pre,1),tf.argmax(v_ys,1))
    accuracy = tf.reduce_mean(tf.cast(correct_predicton,tf.float32))
    result = sess.run(accuracy,feed_dict = {xs:v_xs,ys:v_ys,keep_prob:1})
    return result

def weight_variable(shape):
    initial = tf.truncated_normal(shape=shape,stddev=0.1)
    return tf.Variable(initial)

def bias_variable(shape):
    initial = tf.constant(0.1,shape=shape)
    return tf.Variable(initial)

def conv2d(x,W):
    #stride [1,x_movement,y_movement,1]
    #Must have strides[0] = strides[3] = 1
    return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding="SAME")

def max_pool_2x2(x):
    # stride [1,x_movement,y_movement,1]
    return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding="SAME")

def add_layer(inputs,in_size,out_size,activation_function=None):
    Weight = tf.Variable(tf.random_normal([in_size,out_size]))
    biases = tf.Variable(tf.zeros([1,out_size])+0.1)
    Wx_plus_b = tf.matmul(inputs,Weight)+biases
    if activation_function is None:
        outputs = Wx_plus_b
    else:
        outputs = activation_function(Wx_plus_b)
    return outputs

#define placeholder for inputs to network

xs = tf.placeholder(tf.float32,[None,784])
ys = tf.placeholder(tf.float32,[None,10])
keep_prob = tf.placeholder(tf.float32)
x_image = tf.reshape(xs,[-1,28,28,1])

## conv1 layer ##
W_conv1 = weight_variable([5,5, 1,32]) # patch 5x5, in size 1, out size 32
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) # output size 28x28x32
h_pool1 = max_pool_2x2(h_conv1)                                         # output size 14x14x32

## conv2 layer ##
W_conv2 = weight_variable([5,5, 32, 64]) # patch 5x5, in size 32, out size 64
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) # output size 14x14x64
h_pool2 = max_pool_2x2(h_conv2)              # output size 7x7x64


# #func1 layer
# input = tf.reshape(h_pool2,[-1,7*7*64])
# fc1 = add_layer(input,7*7*64,1024,activation_function=tf.nn.relu)
# fc1_drop = tf.nn.dropout(fc1,keep_prob)
#
# #func2 layer
# fc2 = add_layer(fc1_drop,1024,10,activation_function=tf.nn.softmax)
# prediction = fc2

## func1 layer ##
W_fc1 = weight_variable([7*7*64, 1024])
b_fc1 = bias_variable([1024])
# [n_samples, 7, 7, 64] ->> [n_samples, 7*7*64]
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

## func2 layer ##
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
prediction = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

#loss
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys*tf.log(prediction),reduction_indices=[1]))

train_step = tf.train.AdamOptimizer(0.0001).minimize(cross_entropy)

config = tf.ConfigProto(log_device_placement=True)
config.gpu_options.allow_growth = True

sess = tf.Session(config=config)

sess.run(tf.initialize_all_variables())

for i in range(1000):
    batch_xs,batch_ys = mnist.train.next_batch(100)
    sess.run(train_step,feed_dict={xs:batch_xs,ys:batch_ys,keep_prob:0.5})
    if i%50 ==0:
        print(compute_accuracy(mnist.test.images,mnist.test.labels))