让我来详细讲解一下“图解排序算法之希尔排序Java实现”的完整攻略。
1. 前言
本篇攻略摘自江南蓝山的“图解排序算法”系列文章,讲解希尔排序在Java中的实现方法。
2. 希尔排序简介
希尔排序是一种基于插入排序的快速排序算法,也被称为“缩小增量排序”。它的基本思想是将待排序的数组按照一定的间隔分成若干个子序列,然后对每个子序列分别进行插入排序。随着间隔不断减小,子序列趋于有序,最后整个数组就能够被很快地排序。
3. 希尔排序Java实现
希尔排序的Java实现过程如下:
public void shellSort(int[] nums) {
// 初始增量
int gap = nums.length / 2;
// 当增量为1时,排序完毕,退出循环
while(gap > 0) {
// 对所有子序列进行排序
for(int i = gap; i < nums.length; i++) {
int temp = nums[i];
int j = i - gap;
while(j >= 0 && nums[j] > temp) {
nums[j + gap] = nums[j];
j -= gap;
}
nums[j + gap] = temp;
}
gap /= 2; // 缩小增量
}
}
这段代码中,我们先设置一个初始增量(一般取数组长度的一半),然后每次缩小增量直到1,对每个子序列进行插入排序,最终完成整个数组的排序。
4. 示例说明
我们通过一个简单的示例来验证希尔排序的正确性,假设我们现在要对如下数组进行排序:
[8, 9, 1, 7, 2, 3, 5, 4, 6, 0]
首先,设置初始增量为5,根据增量将数组分成5个子序列:
[8, 3], [9, 5], [1, 4], [7, 6], [2, 0]
对每个子序列分别进行插入排序,得到排序后的子序列:
[3, 8], [5, 9], [1, 4], [6, 7], [0, 2]
然后,缩小增量为2,根据增量将数组分成2个子序列:
[3, 1, 0, 8, 6], [5, 4, 9, 7, 2]
对每个子序列分别进行插入排序,得到排序后的子序列:
[0, 1, 3, 6, 8], [2, 4, 5, 7, 9]
最后,缩小增量为1,对整个数组进行插入排序,得到最终的排序结果:
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
可以看到,经过希尔排序的处理,原本无序的数组已经变成了有序的数组。
5. 结论
希尔排序是一种高效的排序算法,它通过缩小增量的方式对子序列进行插入排序,最终完成整个数组的排序。虽然希尔排序的时间复杂度与其增量序列的选择有关,但实际应用中一般取数组长度的一半作为初始增量,效果也非常不错。
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:图解排序算法之希尔排序Java实现 - Python技术站