下面是关于“Python神经网络slim常用函数训练保存模型”的完整攻略。
Python神经网络slim常用函数训练保存模型
在Python神经网络中,slim是一个常用的库,它提供了许多方便的函数来训练和保存模型。以下是使用slim训练和保存模型的步骤:
步骤1:定义模型
首先需要定义模型。以下是定义模型的示例:
import tensorflow as tf
import tensorflow.contrib.slim as slim
def my_model(inputs):
net = slim.conv2d(inputs, 32, [3, 3], scope='conv1')
net = slim.max_pool2d(net, [2, 2], scope='pool1')
net = slim.conv2d(net, 64, [3, 3], scope='conv2')
net = slim.max_pool2d(net, [2, 2], scope='pool2')
net = slim.flatten(net, scope='flatten')
net = slim.fully_connected(net, 1024, scope='fc1')
net = slim.dropout(net, 0.5, scope='dropout1')
net = slim.fully_connected(net, 10, activation_fn=None, scope='fc2')
return net
步骤2:定义损失函数和优化器
接下来需要定义损失函数和优化器。以下是定义损失函数和优化器的示例:
import tensorflow as tf
import tensorflow.contrib.slim as slim
inputs = tf.placeholder(tf.float32, [None, 28, 28, 1])
labels = tf.placeholder(tf.int64, [None])
logits = my_model(inputs)
loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)
train_op = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)
步骤3:训练模型
接下来需要训练模型。以下是训练模型的示例:
import tensorflow as tf
import tensorflow.contrib.slim as slim
inputs = tf.placeholder(tf.float32, [None, 28, 28, 1])
labels = tf.placeholder(tf.int64, [None])
logits = my_model(inputs)
loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)
train_op = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(1000):
batch_inputs, batch_labels = get_batch()
_, loss_val = sess.run([train_op, loss], feed_dict={inputs: batch_inputs, labels: batch_labels})
if i % 100 == 0:
print('Step %d, loss = %.2f' % (i, loss_val))
步骤4:保存模型
最后需要保存模型。以下是保存模型的示例:
import tensorflow as tf
import tensorflow.contrib.slim as slim
inputs = tf.placeholder(tf.float32, [None, 28, 28, 1])
labels = tf.placeholder(tf.int64, [None])
logits = my_model(inputs)
loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)
train_op = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(1000):
batch_inputs, batch_labels = get_batch()
_, loss_val = sess.run([train_op, loss], feed_dict={inputs: batch_inputs, labels: batch_labels})
if i % 100 == 0:
print('Step %d, loss = %.2f' % (i, loss_val))
saver.save(sess, 'my_model.ckpt')
总结
在本攻略中,我们介绍了使用Python神经网络slim常用函数训练保存模型的步骤。我们提供了定义模型、定义损失函数和优化器、训练模型和保存模型的示例。使用slim库可以方便地训练和保存模型,提高开发效率。
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:python神经网络slim常用函数训练保存模型 - Python技术站