加载模型并查看网络在Python中是非常常见的操作,一般可以通过以下步骤完成:
1. 加载模型
在Python中加载模型,可以使用torch.load()
函数从文件中读取保存的模型,语法如下:
import torch
# Load the trained model
model = torch.load("path/to/model.pth")
其中,path/to/model.pth
是保存的模型文件的路径,可以是绝对路径或相对路径。
2. 查看网络结构
我们可以使用print()
函数或tensorboard
来查看网络结构。如果要使用print()
函数,需要遍历模型的所有模块并打印它们的结构,示例代码如下:
import torch
import torchvision.models as models
# Load the pre-trained ResNet18
resnet18 = models.resnet18(pretrained=True)
# Print the network structure
for name, module in resnet18.named_modules():
print(name, module)
其中,models.resnet18(pretrained=True)
是载入已经预训练好的ResNet18模型,resnet18.named_modules()
返回模型中所有包含在模块列表中的子模块以及它们的名字。通过遍历模型的子模块来打印它们的名字和结构。
另外,我们也可以使用tensorboard
查看网络结构,示例代码如下:
import torch
from tensorboardX import SummaryWriter
# Load the trained model
model = torch.load("path/to/model.pth")
# Export to TensorBoard
writer = SummaryWriter()
writer.add_graph(model)
writer.close()
其中,SummaryWriter()
用于创建SummaryWriter
对象来将数据写入TensorBoard,writer.add_graph(model)
则将模型输出到TensorBoard中。我们可以通过浏览器打开TensorBoard来查看网络结构。
举例如下:
- 示例一:加载已经训练好的模型,并输出网络结构。
import torch
import torchvision.models as models
# Load the pre-trained ResNet18
resnet18 = models.resnet18(pretrained=True)
# Print the network structure
for name, module in resnet18.named_modules():
print(name, module)
输出结果如下:
conv1 Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
bn1 BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
relu ReLU(inplace=True)
maxpool MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
layer1.0.conv1 Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
layer1.0.bn1 BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
layer1.0.relu ReLU(inplace=True)
layer1.0.conv2 Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
layer1.0.bn2 BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
layer1.1.conv1 Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
layer1.1.bn1 BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
layer1.1.relu ReLU(inplace=True)
layer1.1.conv2 Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
layer1.1.bn2 BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
layer2.0.conv1 Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
layer2.0.bn1 BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
layer2.0.relu ReLU(inplace=True)
layer2.0.conv2 Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
layer2.0.bn2 BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
layer2.0.downsample Sequential(
(0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
layer2.1.conv1 Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
layer2.1.bn1 BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
layer2.1.relu ReLU(inplace=True)
layer2.1.conv2 Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
layer2.1.bn2 BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
layer3.0.conv1 Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
layer3.0.bn1 BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
layer3.0.relu ReLU(inplace=True)
layer3.0.conv2 Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
layer3.0.bn2 BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
layer3.0.downsample Sequential(
(0): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
layer3.1.conv1 Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
layer3.1.bn1 BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
layer3.1.relu ReLU(inplace=True)
layer3.1.conv2 Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
layer3.1.bn2 BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
layer4.0.conv1 Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
layer4.0.bn1 BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
layer4.0.relu ReLU(inplace=True)
layer4.0.conv2 Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
layer4.0.bn2 BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
layer4.0.downsample Sequential(
(0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
layer4.1.conv1 Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
layer4.1.bn1 BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
layer4.1.relu ReLU(inplace=True)
layer4.1.conv2 Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
layer4.1.bn2 BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
avgpool AdaptiveAvgPool2d(output_size=(1, 1))
fc Linear(in_features=512, out_features=1000, bias=True)
- 示例二:使用tensorboard输出网络结构。
import torch
from tensorboardX import SummaryWriter
# Load the trained model
model = torch.load("path/to/model.pth")
# Export to TensorBoard
writer = SummaryWriter()
writer.add_graph(model)
writer.close()
请确保将path/to/model.pth
替换成实际的模型文件路径。运行上述代码后,打开TensorBoard界面,点击Graph
选项卡,即可看到模型的图表结构。
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Python如何加载模型并查看网络 - Python技术站