# -*- coding: utf-8 -*- import numpy as np np.random.seed(1337) from keras.datasets import mnist from keras.utils import np_utils from keras.models import Sequential from keras.layers import SimpleRNN,Activation,Dense from keras.optimizers import Adam TIME_STEPS = 28 #图片的高 INPUT_SIZE = 28 #图片的行 BATCH_SIZE = 50 #每批训练多少图片 BATCH_INDEX = 0 OUTPUT_SIZE = 10 CELL_SIZE = 50 LR = 0.001 #下载mnist数据集 # X shape (60000,28*28) ,y shape (10000) (X_train,y_train),(X_test,y_test) = mnist.load_data() # 数据预处理 X_train = X_train.reshape(-1,28,28)/255 X_test = X_test.reshape(-1,28,28)/255 y_train = np_utils.to_categorical(y_train,num_classes=10) y_test = np_utils.to_categorical(y_test,num_classes=10) # 建模型 model = Sequential() # RNN model.add(SimpleRNN( batch_input_shape=(None,TIME_STEPS,INPUT_SIZE),# 每次训练的量(None表示全部),图片大小 output_dim=CELL_SIZE, )) # 输出层 model.add(Dense(OUTPUT_SIZE)) model.add(Activation('softmax')) # 优化器 adam = Adam(LR) model.compile(optimizer=adam, loss='categorical_crossentropy', metrics=['accuracy']) # 训练 for step in range(4001): X_batch=X_train[BATCH_INDEX:BATCH_SIZE+BATCH_INDEX,:,:] Y_batch=y_train[BATCH_INDEX:BATCH_SIZE+BATCH_INDEX,:] cost = model.train_on_batch(X_batch,Y_batch) BATCH_INDEX += BATCH_SIZE BATCH_INDEX = 0 if BATCH_INDEX>=X_train.shape[0] else BATCH_INDEX if step % 500 == 0: cost,accuracy = model.evaluate(X_test,y_test,batch_size=y_test.shape[0],verbose=False) print('test cost: ',cost,'test accuracy: ',accuracy)
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:用Keras搭建神经网络 简单模版(四)—— RNN Classifier 循环神经网络(手写数字图片识别) - Python技术站