在 pytorch 中实现计算图和自动求导

在PyTorch中,计算图和自动求导是非常重要的概念。计算图是一种数据结构,用于表示计算过程,而自动求导则是一种技术,用于计算计算图中的梯度。本文将提供一个完整的攻略,介绍如何在PyTorch中实现计算图和自动求导。我们将提供两个示例,分别是使用张量和使用变量实现计算图和自动求导。

示例1:使用张量实现计算图和自动求导

以下是一个示例,展示如何使用张量实现计算图和自动求导。

1. 导入库

import torch

2. 创建张量

x = torch.tensor(2.0, requires_grad=True)
y = torch.tensor(3.0, requires_grad=True)

3. 定义计算图

z = x**2 + y**3

4. 计算梯度

z.backward()

5. 输出梯度

print(x.grad)
print(y.grad)

示例2:使用变量实现计算图和自动求导

以下是一个示例,展示如何使用变量实现计算图和自动求导。

1. 导入库

import torch
from torch.autograd import Variable

2. 创建变量

x = Variable(torch.tensor(2.0), requires_grad=True)
y = Variable(torch.tensor(3.0), requires_grad=True)

3. 定义计算图

z = x**2 + y**3

4. 计算梯度

z.backward()

5. 输出梯度

print(x.grad)
print(y.grad)

总结

本文提供了一个完整的攻略,介绍了如何在PyTorch中实现计算图和自动求导。我们提供了两个示例,分别是使用张量和使用变量实现计算图和自动求导。在实现过程中,我们使用了PyTorch的张量和变量,并使用了backward()函数计算梯度。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:在 pytorch 中实现计算图和自动求导 - Python技术站

(0)
上一篇 2023年5月15日
下一篇 2023年5月15日

相关文章

  • pytorch 不同版本对应的cuda

    参考官网: https://pytorch.org/get-started/previous-versions/   查看cuda版本:cat /usr/local/cuda/version.txt  torch、torchvision、cuda 、python对应版本匹配         参考链接:https://www.zhihu.com/questio…

    2023年4月8日
    00
  • 动手学pytorch-优化算法

    优化算法 1.Momentum 2.AdaGrad 3.RMSProp 4.AdaDelta 5.Adam 1.Momentum 目标函数有关自变量的梯度代表了目标函数在自变量当前位置下降最快的方向。因此,梯度下降也叫作最陡下降(steepest descent)。在每次迭代中,梯度下降根据自变量当前位置,沿着当前位置的梯度更新自变量。然而,如果自变量的迭代…

    PyTorch 2023年4月7日
    00
  • pytorch官网上两个例程

    caffe用起来太笨重了,最近转到pytorch,用起来实在不要太方便,上手也非常快,这里贴一下pytorch官网上的两个小例程,掌握一下它的用法:   例程一:利用nn  这个module构建网络,实现一个图像分类的小功能; 链接:http://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.ht…

    PyTorch 2023年4月8日
    00
  • pytorch训练模型的一些坑

    1. 图像读取 opencv的python和c++读取的图像结果不一致,是因为python和c++采用的opencv版本不一样,从而使用的解码库不同,导致读取的结果不同。 详细内容参考:https://www.cnblogs.com/haiyang21/p/11655404.html 2. 图像变换 PIL和pytorch的图像resize操作,与openc…

    PyTorch 2023年4月8日
    00
  • 解说pytorch中的model=model.to(device)

    这篇文章主要介绍了pytorch中的model=model.to(device)使用说明,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教 这代表将模型加载到指定设备上。 其中,device=torch.device(“cpu”)代表的使用cpu,而device=torch.device(“cuda”)则代表的使用GPU。 当我…

    PyTorch 2023年4月8日
    00
  • Pytorch 和 Tensorflow v1 兼容的环境搭建方法

    以下是“PyTorch和TensorFlow v1兼容的环境搭建方法”的完整攻略,包含两个示例说明。 示例1:使用conda创建虚拟环境 步骤1:安装conda 首先,我们需要安装conda。您可以从Anaconda官网下载并安装conda。 步骤2:创建虚拟环境 我们可以使用conda创建一个虚拟环境,该环境包含PyTorch和TensorFlow v1。…

    PyTorch 2023年5月15日
    00
  • 解决安装tensorflow遇到无法卸载numpy 1.8.0rc1的问题

    解决安装tensorflow遇到无法卸载numpy 1.8.0rc1的问题 在安装TensorFlow时,有时会遇到无法卸载numpy 1.8.0rc1的问题,这可能会导致安装TensorFlow失败。本文将介绍如何解决这个问题,并演示两个示例。 示例一:使用pip install –ignore-installed numpy命令安装TensorFlow…

    PyTorch 2023年5月15日
    00
  • Pytorch模型量化

    在深度学习中,量化指的是使用更少的bit来存储原本以浮点数存储的tensor,以及使用更少的bit来完成原本以浮点数完成的计算。这么做的好处主要有如下几点: 更少的模型体积,接近4倍的减少; 可以更快的计算,由于更少的内存访问和更快的int8计算,可以快2~4倍。 一个量化后的模型,其部分或者全部的tensor操作会使用int类型来计算,而不是使用量化之前的…

    2023年4月8日
    00
合作推广
合作推广
分享本页
返回顶部