Python数据分析–Numpy常用函数介绍(8)–Numpy中几中常见的图形

在NumPy中,所有的标准三角函数如sin、cos、tan等均有对应的通用函数。

一、利萨茹曲线

(Lissajous curve)利萨茹曲线是一种很有趣的使用三角函数的方式(示波器上显示出利萨茹曲线)。利萨茹曲线由以下参数方程定义:

x = A sin(at + n/2)

y = B sin(bt)
利萨茹曲线的参数包括 A 、 B 、 a 和 b 。为简单起见,我们令 A 和 B 均为1,设置的参数为 a=9 , b=8

import numpy as np
import matplotlib.pyplot as plt

A=B=1
a=9
b=8

t = np.linspace(-np.pi, np.pi, 201)  #使用linspace函数初始化变量t
x = np.sin(a * t + np.pi/2)  # sin 函数和NumPy常量 pi 计算变量 x 
y = np.sin(b * t)  # sin函数计算变量y
plt.plot(x, y)
plt.show()

运行结果:

Python数据分析--Numpy常用函数介绍(8)--Numpy中几中常见的图形

二、计算斐波那契数列

斐波那契数列的递推关系可以用矩阵来表示。斐波那契数列的计算等价于矩阵的连乘。可用两种方法计算了斐波那契数列

1)黄金比例计算方法,使用 rint 函数对浮点数取整但不改变浮点数类型

1,1,2,3,5,8,13,21,34,55,89,……

#   斐波那契数,用黄金分割公式或通常所说的比奈公式,加上取整函数
n = np.arange(1, 9)
sqrt5 = np.sqrt(5)
phi = (1 + sqrt5)/2 #利用根号5计算黄金比例,或者直接用phi=1+0.618 
print("比例:",phi)
print('n')
fibonacci = np.rint((phi**n - (-1/phi)**n)/sqrt5)  #用rint()函数对浮点数取整但不改变浮点数类型
print("Fibonacci", fibonacci)

2)利用矩阵进行计算:用 matrix 函数创建矩阵

# 斐波那契数,用矩阵来表示斐波那契数列的递推关系
F = np.matrix([[1, 1], [1, 0]])
print ("8th Fibonacci:", (F ** 10)[0, 0])

运行结果:

比例: 1.618033988749895

Fibonacci [ 1.  1.  2.  3.  5.  8. 13. 21.]
8th Fibonacci: 89

三、方波

方波可以近似表示为多个正弦波的叠加。任意一个方波信号都可以用无穷傅里叶级数来表示。

需要累加很多项级数,且级数越多结果越精确,这里取 k=99(可以分别设置为9,50,1000等进行测试观察生成效果) 以保证足够的精度。绘制方波的步骤如下。

1) 初始化 t 和 k 开始,并将函数值初始化为

 

m = np.linspace(-np.pi, np.pi, 201) #从 -pi 到 pi 上均匀分布的 201 个点
k = np.arange(1,99)   # k=99 以保证足够的精度,如图中的9 20 99显示的波形
k = 2 * k - 1
f = np.zeros_like(m)

2)使用 sin()求正弦函数,用sum()数计算各项级数:

for i in range(len(m)):  #使用 sin 和 sum 函数进行计算
    f[i] = np.sum(np.sin(k * m[i])/k)
f = (4 / np.pi) * f

3)绘制波形

plt.plot(t, f)
plt.show()

Python数据分析--Numpy常用函数介绍(8)--Numpy中几中常见的图形

四、锯齿波和三角波

锯齿波和三角波也是常见的波形。和方波类似,也可以将它们表示成无穷傅里叶级数。对锯齿波取绝对值即可得到三角波。锯齿波的无穷级数表达式如下:

import numpy as np
import matplotlib.pyplot as plt

t = np.linspace(-np.pi, np.pi, 201)
k = np.arange(1, 99)
f = np.zeros_like(t)
for i in range(len(t)):
    f[i] = np.sum(np.sin(2 * np.pi * k * t[i])/k)

f = (-2 / np.pi) * f
plt.plot(t, f, lw=1.0)
plt.plot(t, np.abs(f), lw=2.0)
plt.show()

运行结果:

Python数据分析--Numpy常用函数介绍(8)--Numpy中几中常见的图形

 

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Python数据分析–Numpy常用函数介绍(8)–Numpy中几中常见的图形 - Python技术站

(0)
上一篇 2023年4月2日
下一篇 2023年4月2日

相关文章

  • Python数据分析–Numpy常用函数介绍(4)–Numpy中的线性关系和数据修剪压缩

    摘要:总结股票均线计算原理–线性关系,也是以后大数据处理的基础之一,NumPy的 linalg 包是专门用于线性代数计算的。作一个假设,就是一个价格可以根据N个之前的价格利用线性模型计算得出。     前一篇,在计算均线,指数均线时,分别计算了不同的权重,比如 和 都是按不同的计算方法来计算出相关的权重,一个股价可以用之前股价的线性组合表示出来,也即,这个…

    2023年4月2日
    00
  • python入门基础(6)–语句基础(if语句、while语句)

    一、if语句 if 语句让你能够检查程序的当前状态,并据此采取相应的措施。if语句可应用于列表,以另一种方式处理列表中的大多数元素,以及特定值的元素1、简单示例 names=[‘xiaozhan’,’caiyilin’,’zhoushen’,’DAOlang’,’huangxiaoming’] for name in names: if name == ‘c…

    2023年4月2日
    00
  • Python数据分析–Numpy常用函数介绍(5)–Numpy中的相关性函数

    摘要:NumPy中包含大量的函数,这些函数的设计初衷是能更方便地使用,掌握解这些函数,可以提升自己的工作效率。这些函数包括数组元素的选取和多项式运算等。下面通过实例进行详细了解。         前述通过对某公司股票的收盘价的分析,了解了某些Numpy的一些函数。通常实际中,某公司的股价被另外一家公司的股价紧紧跟随,它们可能是同领域的竞争对手,也可能是同一公…

    2023年4月2日
    00
  • python数据可视化-matplotlib入门(1)–安装及绘制简单的曲线

    一、安装matplotlib 1)由于已安装anaconda,可直接打开anaconda prompt,再用命令pip install matplotlib进行安装,因镜像问题,可能较慢,建议第2种方式。 2)访问https://pypi.org/project/matplotlib/#files,并查找与你使用的Python版本匹配的wheel文件(扩展名…

    2023年4月2日
    00
  • python入门基础(3) 字符串、列表访问

    一、列表 列表由一系列按特定顺序排列的多个元素或空元素组成,包含字母表中所有字母、数字0~9或所有家庭成员姓名的列表;列表中各元素间可以没有任何关系;实际使用过程中,通常给列表指定一个表示复数的名称,如names,cars,letters,dog_names。 列表大多数是是动态的,列表创建后,将随着程序的运行,列表的长度,数值(或字符串值)都会不断变化,需…

    2023年4月2日
    00
  • Python数据分析–Numpy常用函数介绍(6)–Numpy中与股票成交量有关的计算

            成交量(volume)是投资中一个非常重要的变量,它是指在某一时段内具体的交易数,可以在分时图中绘制,包括日线图、周线图、月线图甚至是5分钟、30分钟、60分钟图中绘制。   股票市场成交量的变化反映了资金进出市场的情况,成交量是判断市场走势的重要指标。一般情况下,成交量大且价格上涨的股票,趋势向好。成交量持续低迷时,一般出现在熊市或股票整理…

    2023年4月2日
    00
  • python数据可视化-matplotlib入门(2)-利用随机函数生成变化图形

    综合前述的类、函数、matplotlib等,完成一个随机移动的过程(注意要确定移动的次数,比如10万次),每次行走都完全是随机的,没有明确的方向,结果是由一系列随机决策确定的,最后显示出每次移动的位置的图表。 思考: 1)每次走动多少个像素,由随机函数决定,每次移动方向也随机确定。由随机方向和随机像素共同移动位置大小和方向。 2)保证将每次移动的位置保存在列…

    2023年4月2日
    00
  • Python数据分析–Numpy常用函数介绍(7)–Numpy中矩阵和通用函数

    在NumPy中,矩阵是 ndarray 的子类,与数学概念中的矩阵一样,NumPy中的矩阵也是二维的,可以使用 mat 、 matrix 以及 bmat 函数来创建矩阵。 一、创建矩阵 mat 函数创建矩阵时,若输入已为 matrix 或 ndarray 对象,则不会为它们创建副本。 因此,调用 mat() 函数和调用 matrix(data, copy=F…

    2023年4月2日
    00
合作推广
合作推广
分享本页
返回顶部