import torch
import torch.nn.functional as F
# replace following class code with an easy sequential network
class Net(torch.nn.Module):
def __init__(self, n_feature, n_hidden, n_output):
super(Net, self).__init__()
self.hidden = torch.nn.Linear(n_feature, n_hidden) # hidden layer
self.predict = torch.nn.Linear(n_hidden, n_output) # output layer
def forward(self, x):
x = F.relu(self.hidden(x)) # activation function for hidden layer
x = self.predict(x) # linear output
return x
net1 = Net(1, 10, 1)
print(net1) # net1 architecture
> Net(
> (hidden): Linear(in_features=1, out_features=10, bias=True)
> (predict): Linear(in_features=10, out_features=1, bias=True)
> )
easy and fast way to build your network
- 两种方法使用效果完全相同
# easy and fast way to build your network
net2 = torch.nn.Sequential(
torch.nn.Linear(1, 10),
torch.nn.ReLU(),
torch.nn.Linear(10, 1)
)
print(net2) # net2 architecture
> Sequential(
> (0): Linear(in_features=1, out_features=10, bias=True)
> (1): ReLU()
> (2): Linear(in_features=10, out_features=1, bias=True)
> )
END
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:pytorch 6 build_nn_quickly 快速搭建神经网络 - Python技术站