Pandas时间序列基础详解(转换,索引,切片)

Pandas时间序列基础详解(转换,索引,切片)

时间序列简介

时间序列是一种以时间为索引的数据类型,是数据科学中常见的重要类型之一。在处理时间序列数据时,Pandas是非常有用的工具。

Pandas时间序列的两种数据类型

Pandas中有两种数据类型代表了时间序列:

  • Timestamp:表示某个具体的时间点。
  • Period:表示某个时间段。

转换时间序列数据

Pandas提供了许多函数来将不同的时间序列数据类型相互转换。这些函数包括:

  • pandas.to_datetime():将字符串转换为Pandas的Timestamp类型。

```
import pandas as pd
import numpy as np

s = pd.Series(['20160101', '20160102', '20160103'])
s_datetime = pd.to_datetime(s)
print(s_datetime)
```

输出结果为:

0 2016-01-01
1 2016-01-02
2 2016-01-03
dtype: datetime64[ns]

  • pandas.date_range():提供了一种快速生成时间序列的方法。

```
import pandas as pd

s = pd.date_range(start='2021-01-01', end='2021-01-03', freq='D')
print(s)
```

输出结果为:

DatetimeIndex(['2021-01-01', '2021-01-02', '2021-01-03'], dtype='datetime64[ns]', freq='D')

索引时间序列数据

Pandas允许按照时间进行索引。只需要将时间戳或时间段传递给索引函数即可。

import pandas as pd

s = pd.DataFrame({'price': [10, 20, 30]}, index=pd.to_datetime(['2021-01-01', '2021-01-02', '2021-01-03']))
print(s.loc['2021-01-02'])

输出结果为:

price    20
Name: 2021-01-02 00:00:00, dtype: int64

切片时间序列数据

Pandas提供了多种切片时间序列数据的方法。

  • 按照年份切片

```
import pandas as pd

s = pd.DataFrame({'price': [10, 20, 30, 40]}, index=pd.to_datetime(['2021-01-01', '2021-02-01', '2022-01-01', '2022-02-01']))
print(s.loc['2021'])
```

输出结果为:

price
2021-01-01 10
2021-02-01 20

  • 按照年份和月份切片

```
import pandas as pd

s = pd.DataFrame({'price': [10, 20, 30, 40]}, index=pd.to_datetime(['2021-01-01', '2021-02-01', '2022-01-01', '2022-02-01']))
print(s.loc['2021-02'])
```

输出结果为:

price
2021-02-01 20

以上是Pandas时间序列基础详解的相关内容,希望对您有所帮助。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Pandas时间序列基础详解(转换,索引,切片) - Python技术站

(0)
上一篇 2023年5月14日
下一篇 2023年5月14日

相关文章

  • 在Pandas数据框架中对数值进行四舍五入的方法

    在Pandas数据框架中对数值进行四舍五入可以使用round()方法。该方法用于对数据框架中数值进行准确的四舍五入。 例如,我们有一个如下的数据框架: import pandas as pd # 创建一个数据框架 df = pd.DataFrame({ ‘名称’: [‘苹果’, ‘橘子’, ‘香蕉’, ‘菠萝’], ‘价格’: [3.14159, 1.234…

    python-answer 2023年3月27日
    00
  • Pandas实现Dataframe的重排和旋转

    Pandas实现Dataframe的重排和旋转 Pandas是Python中一个用于数据处理和分析的开源工具,其提供的Dataframe数据结构具有方便快捷地进行数据操作的特点。在实际应用中,经常需要对Dataframe进行重排和旋转操作,以满足特殊的分析需求。 1. Dataframe的重排 Dataframe的重排指的是将数据表的某些行、列按照一定条件重…

    python 2023年5月14日
    00
  • pandas库之DataFrame滑动窗口的实现

    关于“pandas库之DataFrame滑动窗口的实现”,以下是一份完整攻略: 1. DataFrame滑动窗口是什么? 滑动窗口是一种数据处理技术,在数据处理中经常会用到。DataFrame滑动窗口是指在DataFrame数据结构中,对所有行数据进行扫描,每次将指定数量的行数据作为一个滑动窗口,然后对其进行聚合、统计等计算。 2. 如何实现DataFram…

    python 2023年5月14日
    00
  • 在Pandas中把一系列的列表转换为一个系列

    在Pandas中,将一系列的列表转换为一个系列主要可以通过Series类的构造函数实现。Series类是Pandas中最常用的数据结构之一,它有三个主要的构造函数:Series(data, index, dtype),其中参数data表示要创建的Series数据,可以是一个列表、字典或NumPy数组等;参数index为Series数据的索引,即Series的…

    python-answer 2023年3月27日
    00
  • DataFrame.to_excel多次写入不同Sheet的实例

    下面是针对”DataFrame.to_excel多次写入不同Sheet的实例”的完整攻略。 问题描述 在Python中,使用pandas库中的DataFrame.to_excel函数可以将数据输出到Excel,但有时候我们需要将多个DataFrame写入同一个Excel文件的不同Sheet中,该如何操作呢? 解决方案 示例1:使用ExcelWriter 我们…

    python 2023年6月13日
    00
  • Python使用pymysql从MySQL数据库中读出数据的方法

    下面是关于“Python使用pymysql从MySQL数据库中读出数据的方法”的攻略。 准备工作 在使用Python读取MySQL数据库之前,需要先安装pymysql库,用于连接数据库和执行SQL语句。可以通过以下方式进行安装: pip install PyMySQL 安装完成之后,需要在Python中导入pymysql库: import pymysql 连…

    python 2023年6月13日
    00
  • 扁平化一个数据帧的列表

    扁平化一个数据帧的列表是将一个数据帧的嵌套列表中的元素展开成一个扁平化的数据帧,以便更加方便地对数据进行处理和分析。以下是具体的步骤: 首先,需要使用tidyr包中的unnest()函数将列表展开为多个行。该函数需要指定要展开的列名。 例如,我们有一个如下的数据框,其中col1是一个列表列: df <- data.frame( id = c(1,2,3…

    python-answer 2023年3月27日
    00
  • pandas数据清洗,排序,索引设置,数据选取方法

    下面是“pandas数据清洗,排序,索引设置,数据选取方法”的完整攻略。 Pandas数据清洗 在Pandas中,我们常常需要对数据进行清洗,以提高数据质量和可用性。数据清洗的过程包括数据去重,缺失值处理,数据类型转换,字符串处理等。 数据去重 在Pandas中,可以使用drop_duplicates()方法去掉DataFrame中的重复记录。该方法默认以所…

    python 2023年5月14日
    00
合作推广
合作推广
分享本页
返回顶部