在Pandas中把两个文本列连接成一个单列

Pandas 中把两个文本列连接成一个单列可以使用 + 运算符对两个文本列进行连接,生成新的一列。下面是具体的步骤:

  1. 读取数据

为了便于说明,这里使用的数据是一个包含姓名和姓氏的表格数据。请首先导入 Pandas 库并读取数据:

import pandas as pd

data = pd.read_csv('data.csv')
  1. 创建新列

接下来,我们使用 + 运算符将姓氏和名字拼接起来,生成新的一列:

data['Full Name'] = data['First Name'] + ' ' + data['Last Name']

其中,+ 运算符将两个文本列进行了连接,空格 ' ' 则表示姓名中的空格。

  1. 查看结果

最后,我们通过 head() 函数查看生成的新列:

print(data.head())

输出结果如下所示:

   First Name  Last Name     Full Name
0       Peter      Smith    Peter Smith
1      Sarah       Jones   Sarah  Jones
2       John        Doe      John Doe
3       Emily     Wilson  Emily Wilson
4     Michael  Rodriguez  Michael Rodriguez

可以看到,新列 Full Name 成功地将姓氏和名字进行了拼接。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:在Pandas中把两个文本列连接成一个单列 - Python技术站

(0)
上一篇 2023年3月27日
下一篇 2023年3月27日

相关文章

  • Python高级数据分析之pandas和matplotlib绘图

    Python高级数据分析之pandas和matplotlib绘图 简介 Pandas 是基于 Numpy 的专门用于数据分析的工具,Pandas 提供了一种高级数据结构 – Data Frame,使得数据的清洗、导入、处理、统计、分析、可视化等变得更加方便。 Matplotlib 是 Python 中著名的图形库之一,是 Python 所有可视化库的祖先。M…

    python 2023年5月14日
    00
  • pandas DataFrame创建方法的方式

    下面是pandas DataFrame创建方法的完整攻略: 创建一个空的DataFrame 可以使用pandas.DataFrame()函数创建空的DataFrame,示例代码如下: import pandas as pd df = pd.DataFrame() print(df) 输出: Empty DataFrameColumns: []Index: […

    python 2023年5月14日
    00
  • 用Seaborn和Pandas创建时间序列图

    首先,我们需要安装Seaborn和Pandas库,可以通过以下命令来安装: pip install seaborn pandas 接着,我们需要导入库并载入数据: import seaborn as sns import pandas as pd data = pd.read_csv(‘data.csv’, parse_dates=[‘date’]) 这里以…

    python-answer 2023年3月27日
    00
  • Pandas DataFrame操作数据增删查改

    现在我来为你详细讲解“Pandas DataFrame操作数据增删查改”的完整攻略。 1. Pandas DataFrame操作数据增加 Pandas DataFrame操作数据的基本方法是使用.loc或.iloc方法。其中.loc方法可以使用标签(label)来定位,.iloc方法可以使用位置(position)来定位。下面是两个示例。 1.1 使用.lo…

    python 2023年5月14日
    00
  • 从Pandas数据框架中删除列中有缺失值或NaN的行

    在Pandas中,我们可以使用dropna()方法来从数据框架中删除具有缺失值或NaN值的行或列。 为了删除列中有缺失值或NaN的行,我们需要在dropna()方法中指定轴向参数axis=0。此外,我们还需要指定subset参数以确定要处理的列。 以下是完整的过程及示例代码: 导入Pandas库并读入数据: import pandas as pd df = …

    python-answer 2023年3月27日
    00
  • 如何使用Python Pandas将excel文件导入

    使用Python Pandas库可以非常方便地将Excel文件导入到Python中进行数据处理和分析。下面详细讲解如何使用Python Pandas将Excel文件导入: 1.首先导入Pandas库: import pandas as pd 2.读取Excel文件 可以使用以下语句读取Excel文件: df = pd.read_excel("文件路…

    python-answer 2023年3月27日
    00
  • Python的Pandas时序数据详解

    Python的Pandas时序数据详解 在数据分析和数据挖掘任务中,时序数据的常见任务包括数据整理、分析、可视化等。这些任务可以通过Python的Pandas库进行实现。Python的Pandas库是一个基于NumPy的数据分析工具,可以处理各种数据类型,包括时序数据。 本文将详细介绍如何使用Python的Pandas库来处理时序数据,包括数据加载、数据清洗…

    python 2023年5月14日
    00
  • 将Pandas交叉表转换为堆叠数据框架

    将Pandas交叉表转换为堆叠数据框架,可以使用stack函数。下面是详细的攻略: 步骤一:加载数据和创建交叉表 首先,我们需要加载数据和创建交叉表。下面是一个例子,我们加载了一个csv文件,并创建一个基于两个分类变量的交叉表: import pandas as pd # 加载数据 data = pd.read_csv("example.csv&q…

    python-answer 2023年3月27日
    00
合作推广
合作推广
分享本页
返回顶部