1 from PIL import Image 2 import numpy as np 3 import tensorflow as tf 4 import time 5 6 7 bShowAccuracy = True 8 9 10 # 加载手写图片 11 def loadHandWritingImage(strFilePath): 12 im = Image.open(strFilePath, 'r') 13 ndarrayImg = np.array(im.convert("L"), dtype='float') 14 15 return ndarrayImg 16 17 18 # 最大最小值归一化 19 def normalizeImage(ndarrayImg, maxVal = 255, minVal = 0): 20 ndarrayImg = (ndarrayImg - minVal) / (maxVal - minVal) 21 return ndarrayImg 22 23 24 25 # 1)构造自己的手写图片集合,用加载的已训练好的模型识别 26 print('构造待识别数据...') 27 28 # 待识别的手写图片,文件名是0...39 29 fileList = range(0, 39+1) 30 31 ndarrayImgs = np.zeros((len(fileList), 784)) # x行784列 32 33 for index in range(len(fileList)): 34 35 # 加载图片 36 ndarrayImg = loadHandWritingImage('28-pixel-numbers/' + str(index) + '.png') 37 38 # 归一化 39 normalizeImage(ndarrayImg) 40 41 # 转为1x784的数组 42 ndarrayImg = ndarrayImg.reshape((1, 784)) 43 44 # 加入到测试集中 45 ndarrayImgs[index] = ndarrayImg 46 47 48 ##import sys 49 ##sys.exit() 50 51 # 构建测试样本的实际值集合,用于计算正确率 52 53 # 真实结果,用于测试准确度。40行10列 54 ndarrayLabels = np.eye(10, k=0, dtype='float') 55 ndarrayLabels = np.vstack((ndarrayLabels, ndarrayLabels)) 56 ndarrayLabels = np.vstack((ndarrayLabels, ndarrayLabels)) 57 58 59 # 2)下面开始CNN相关 60 61 print('定义Tensor...') 62 63 #定义变量和计算公式 64 65 def conv2d(x, W): 66 return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') 67 68 def max_pool_2x2(x): 69 return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], 70 strides=[1, 2, 2, 1], padding='SAME') 71 72 def weight_variable(shape): 73 initial = tf.truncated_normal(shape, stddev=0.1) 74 return tf.Variable(initial) 75 76 def bias_variable(shape): 77 initial = tf.constant(0.1, shape=shape) 78 return tf.Variable(initial) 79 80 81 x = tf.placeholder(tf.float32, shape=[None, 784]) 82 y_ = tf.placeholder(tf.float32, shape=[None, 10]) 83 84 85 W_conv1 = weight_variable([5, 5, 1, 32]) 86 b_conv1 = bias_variable([32]) 87 88 x_image = tf.reshape(x, [-1, 28, 28, 1]) 89 90 h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) 91 h_pool1 = max_pool_2x2(h_conv1) 92 93 94 W_conv2 = weight_variable([5, 5, 32, 64]) 95 b_conv2 = bias_variable([64]) 96 97 h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) 98 h_pool2 = max_pool_2x2(h_conv2) 99 100 101 102 W_fc1 = weight_variable([7 * 7 * 64, 1024]) 103 b_fc1 = bias_variable([1024]) 104 105 h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) 106 h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) 107 108 109 keep_prob = tf.placeholder(tf.float32) 110 h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) 111 112 113 W_fc2 = weight_variable([1024, 10]) 114 b_fc2 = bias_variable([10]) 115 116 y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2 117 118 correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1)) 119 accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) 120 121 122 with tf.Session() as sess: 123 sess.run(tf.global_variables_initializer()) 124 125 # 3)创建saver对象并加载模型 126 print('加载已训练好的CNN模型...') 127 saver = tf.train.Saver() 128 saver.restore(sess, "saved_model/cnn_handwrite_number.ckpt") 129 130 # 测试耗时 131 print('进行预测:') 132 133 start = time.time() 134 135 # 4)执行预测 136 output = sess.run(y_conv, feed_dict={x: ndarrayImgs, keep_prob:1.0}) 137 138 end = time.time() 139 140 print('预测数字为:\n', output.argmax(axis=1)) # axis:0表示按列,1表示按行 141 print('实际数字为:\n', ndarrayLabels.argmax(axis=1)) 142 143 144 if(bShowAccuracy): 145 accu = accuracy.eval(feed_dict={x: ndarrayImgs, y_: ndarrayLabels, keep_prob: 1.0}) 146 print('识别HateMath苍劲有力的手写数据%d个, 准确率为 %.2f%%, 每个耗时%.5f秒' % 147 (len(ndarrayImgs), accu*100, (end-start)/len(ndarrayImgs))) 148 149 150 151 # todo 152 # 图像分割的准确度 153 154
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:使用TensorFlow的卷积神经网络识别手写数字(3)-识别篇 - Python技术站