以下是Ubuntu配置PyTorch on Graph (PoG)环境的完整攻略,包含两个示例说明。
环境要求
在开始配置PyTorch on Graph (PoG)环境之前,需要确保您的系统满足以下要求:
- Ubuntu 16.04或更高版本
- NVIDIA GPU(建议使用CUDA兼容的GPU)
- NVIDIA驱动程序(建议使用最新版本的驱动程序)
- CUDA 9.0或更高版本
- cuDNN 7.0或更高版本
步骤1:安装NVIDIA驱动程序
在安装PyTorch on Graph (PoG)之前,需要先安装NVIDIA驱动程序。建议使用最新版本的驱动程序,以确保最佳性能和兼容性。
您可以使用以下命令来安装最新版本的NVIDIA驱动程序:
sudo add-apt-repository ppa:graphics-drivers/ppa
sudo apt-get update
sudo apt-get install nvidia-driver-460
安装完成后,您需要重新启动系统以使驱动程序生效。
步骤2:安装CUDA和cuDNN
在安装PyTorch on Graph (PoG)之前,需要先安装CUDA和cuDNN。建议使用CUDA 9.0或更高版本和cuDNN 7.0或更高版本。
安装CUDA
您可以从NVIDIA官方网站下载CUDA安装程序。下载完成后,您可以使用以下命令来安装CUDA:
sudo dpkg -i cuda-repo-ubuntu1604-9-0-local_9.0.176-1_amd64.deb
sudo apt-key add /var/cuda-repo-9-0-local/7fa2af80.pub
sudo apt-get update
sudo apt-get install cuda
安装cuDNN
您可以从NVIDIA官方网站下载cuDNN安装程序。下载完成后,您可以使用以下命令来安装cuDNN:
sudo dpkg -i libcudnn7_7.6.5.32-1+cuda9.0_amd64.deb
sudo dpkg -i libcudnn7-dev_7.6.5.32-1+cuda9.0_amd64.deb
sudo dpkg -i libcudnn7-doc_7.6.5.32-1+cuda9.0_amd64.deb
步骤3:安装PyTorch on Graph (PoG)
在安装PyTorch on Graph (PoG)之前,您需要安装一些依赖项。您可以使用以下命令来安装这些依赖项:
sudo apt-get install build-essential cmake git libboost-all-dev libprotobuf-dev protobuf-compiler libgoogle-glog-dev libgflags-dev libhdf5-dev liblmdb-dev libopencv-dev libsnappy-dev python-dev python-numpy python-pip python-setuptools python-scipy python-tk python-wheel python3-dev python3-numpy python3-pip python3-setuptools python3-scipy python3-tk python3-wheel
安装完成后,您可以使用以下命令来安装PyTorch on Graph (PoG):
git clone https://github.com/pytorch/pytorch.git
cd pytorch
git submodule update --init --recursive
python setup.py install
示例1:使用PyTorch on Graph (PoG)训练MNIST模型
在这个示例中,我们将使用PyTorch on Graph (PoG)训练一个简单的MNIST模型。
首先,我们需要下载MNIST数据集。您可以使用以下命令来下载MNIST数据集:
mkdir data
cd data
wget http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz
wget http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz
wget http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
wget http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz
gunzip *
cd ..
然后,我们可以使用以下代码来定义一个简单的MNIST模型:
import torch
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2(x), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return F.log_softmax(x, dim=1)
接下来,我们可以使用以下代码来训练MNIST模型:
import torch.optim as optim
from torchvision import datasets, transforms
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('data', train=True, download=False,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=64, shuffle=True)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=1000, shuffle=True)
model = Net()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
def train(epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % 10 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
def test():
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
output = model(data)
test_loss += F.nll_loss(output, target, size_average=False).item()
pred = output.data.max(1, keepdim=True)[1]
correct += pred.eq(target.data.view_as(pred)).sum()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
for epoch in range(1, 11):
train(epoch)
test()
在这个示例中,我们首先定义了一个简单的MNIST模型。然后,我们使用PyTorch on Graph (PoG)训练MNIST模型,并在测试集上进行测试。
示例2:使用PyTorch on Graph (PoG)训练CIFAR-10模型
在这个示例中,我们将使用PyTorch on Graph (PoG)训练一个简单的CIFAR-10模型。
首先,我们需要下载CIFAR-10数据集。您可以使用以下命令来下载CIFAR-10数据集:
mkdir data
cd data
wget https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz
tar -xzf cifar-10-python.tar.gz
cd ..
然后,我们可以使用以下代码来定义一个简单的CIFAR-10模型:
import torch
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
接下来,我们可以使用以下代码来训练CIFAR-10模型:
import torch.optim as optim
from torchvision import datasets, transforms
train_transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
test_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
train_dataset = datasets.CIFAR10(root='data', train=True, download=False, transform=train_transform)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)
test_dataset = datasets.CIFAR10(root='data', train=False, download=False, transform=test_transform)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=1000, shuffle=False)
model = Net()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
def train(epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = model(data)
loss = F.cross_entropy(output, target)
loss.backward()
optimizer.step()
if batch_idx % 10 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
def test():
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
output = model(data)
test_loss += F.cross_entropy(output, target, size_average=False).item()
pred = output.data.max(1, keepdim=True)[1]
correct += pred.eq(target.data.view_as(pred)).sum()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
for epoch in range(1, 11):
train(epoch)
test()
在这个示例中,我们首先定义了一个简单的CIFAR-10模型。然后,我们使用PyTorch on Graph (PoG)训练CIFAR-10模型,并在测试集上进行测试。
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Ubuntu配置Pytorch on Graph (PoG)环境过程图解 - Python技术站