一、背景

学习rnn怎么使用

例子: 输入两个数,做加法

二、 代码赏析

from __future__ import print_function
from keras.models import Sequential
from keras.engine.training import slice_X
from keras.layers import Activation, TimeDistributed, Dense, RepeatVector, recurrent
import numpy as np
from six.moves import range


class CharacterTable(object):
    '''
    Given a set of characters:
    + Encode them to a one hot integer representation
    + Decode the one hot integer representation to their character output
    + Decode a vector of probabilities to their character output
    '''
    def __init__(self, chars, maxlen):
        self.chars = sorted(set(chars))
        self.char_indices = dict((c, i) for i, c in enumerate(self.chars))
        self.indices_char = dict((i, c) for i, c in enumerate(self.chars))
        self.maxlen = maxlen

    def encode(self, C, maxlen=None):
        maxlen = maxlen if maxlen else self.maxlen
        X = np.zeros((maxlen, len(self.chars)))
        for i, c in enumerate(C):
            X[i, self.char_indices[c]] = 1
        return X

    def decode(self, X, calc_argmax=True):
        if calc_argmax:
            X = X.argmax(axis=-1)
        return ''.join(self.indices_char[x] for x in X)


class colors:
    ok = '\033[92m'
    fail = '\033[91m'
    close = '\033[0m'

# Parameters for the model and dataset
TRAINING_SIZE = 50000 #输入大小,即训练数据个数
DIGITS = 3   #数字位数
INVERT = True 
# Try replacing GRU, or SimpleRNN
RNN = recurrent.LSTM
HIDDEN_SIZE = 128 #隐含层个数
BATCH_SIZE = 128 
LAYERS = 1 #几层
MAXLEN = DIGITS + 1 + DIGITS #位数

chars = '0123456789+ ' # char 列表
ctable = CharacterTable(chars, MAXLEN)

questions = []
expected = []
seen = set()
print('Generating data...')
while len(questions) < TRAINING_SIZE:
    f = lambda: int(''.join(np.random.choice(list('0123456789')) for i in range(np.random.randint(1, DIGITS + 1))))
    a, b = f(), f()
    # Skip any addition questions we've already seen
    # Also skip any such that X+Y == Y+X (hence the sorting)
    key = tuple(sorted((a, b)))
    if key in seen:
        continue
    seen.add(key)
    # Pad the data with spaces such that it is always MAXLEN
    q = '{}+{}'.format(a, b)
    query = q + ' ' * (MAXLEN - len(q))
    ans = str(a + b)
    # Answers can be of maximum size DIGITS + 1
    ans += ' ' * (DIGITS + 1 - len(ans)) #补位,凑够四位
    if INVERT:
        query = query[::-1]
    questions.append(query)
    expected.append(ans)
print('Total addition questions:', len(questions))

#向量化 print('Vectorization...') X = np.zeros((len(questions), MAXLEN, len(chars)), dtype=np.bool) y = np.zeros((len(questions), DIGITS + 1, len(chars)), dtype=np.bool) for i, sentence in enumerate(questions): X[i] = ctable.encode(sentence, maxlen=MAXLEN) for i, sentence in enumerate(expected): y[i] = ctable.encode(sentence, maxlen=DIGITS + 1) # Shuffle (X, y) in unison as the later parts of X will almost all be larger digits indices = np.arange(len(y)) np.random.shuffle(indices) #混淆 X = X[indices] y = y[indices] # Explicitly set apart 10% for validation data that we never train over split_at = len(X) - len(X) / 10 (X_train, X_val) = (slice_X(X, 0, split_at), slice_X(X, split_at)) (y_train, y_val) = (y[:split_at], y[split_at:]) print(X_train.shape) print(y_train.shape) print('Build model...') model = Sequential() # "Encode" the input sequence using an RNN, producing an output of HIDDEN_SIZE # note: in a situation where your input sequences have a variable length, # use input_shape=(None, nb_feature). model.add(RNN(HIDDEN_SIZE, input_shape=(MAXLEN, len(chars)))) # For the decoder's input, we repeat the encoded input for each time step model.add(RepeatVector(DIGITS + 1)) #输入 × n 的意思, 貌似就是加强效果 # The decoder RNN could be multiple layers stacked or a single layer for _ in range(LAYERS): model.add(RNN(HIDDEN_SIZE, return_sequences=True)) # For each of step of the output sequence, decide which character should be chosen model.add(TimeDistributed(Dense(len(chars)))) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # Train the model each generation and show predictions against the validation dataset for iteration in range(1, 200): print() print('-' * 50) print('Iteration', iteration) model.fit(X_train, y_train, batch_size=BATCH_SIZE, nb_epoch=1, validation_data=(X_val, y_val)) ### # Select 10 samples from the validation set at random so we can visualize errors for i in range(10): ind = np.random.randint(0, len(X_val)) rowX, rowy = X_val[np.array([ind])], y_val[np.array([ind])] preds = model.predict_classes(rowX, verbose=0) q = ctable.decode(rowX[0]) correct = ctable.decode(rowy[0]) guess = ctable.decode(preds[0], calc_argmax=False) print('Q', q[::-1] if INVERT else q) print('T', correct) print(colors.ok + '☑' + colors.close if correct == guess else colors.fail + '☒' + colors.close, guess) print('---')