一、背景
学习rnn怎么使用
例子: 输入两个数,做加法
二、 代码赏析
from __future__ import print_function from keras.models import Sequential from keras.engine.training import slice_X from keras.layers import Activation, TimeDistributed, Dense, RepeatVector, recurrent import numpy as np from six.moves import range class CharacterTable(object): ''' Given a set of characters: + Encode them to a one hot integer representation + Decode the one hot integer representation to their character output + Decode a vector of probabilities to their character output ''' def __init__(self, chars, maxlen): self.chars = sorted(set(chars)) self.char_indices = dict((c, i) for i, c in enumerate(self.chars)) self.indices_char = dict((i, c) for i, c in enumerate(self.chars)) self.maxlen = maxlen def encode(self, C, maxlen=None): maxlen = maxlen if maxlen else self.maxlen X = np.zeros((maxlen, len(self.chars))) for i, c in enumerate(C): X[i, self.char_indices[c]] = 1 return X def decode(self, X, calc_argmax=True): if calc_argmax: X = X.argmax(axis=-1) return ''.join(self.indices_char[x] for x in X) class colors: ok = '\033[92m' fail = '\033[91m' close = '\033[0m' # Parameters for the model and dataset TRAINING_SIZE = 50000 #输入大小,即训练数据个数 DIGITS = 3 #数字位数 INVERT = True # Try replacing GRU, or SimpleRNN RNN = recurrent.LSTM HIDDEN_SIZE = 128 #隐含层个数 BATCH_SIZE = 128 LAYERS = 1 #几层 MAXLEN = DIGITS + 1 + DIGITS #位数 chars = '0123456789+ ' # char 列表 ctable = CharacterTable(chars, MAXLEN) questions = [] expected = [] seen = set() print('Generating data...') while len(questions) < TRAINING_SIZE: f = lambda: int(''.join(np.random.choice(list('0123456789')) for i in range(np.random.randint(1, DIGITS + 1)))) a, b = f(), f() # Skip any addition questions we've already seen # Also skip any such that X+Y == Y+X (hence the sorting) key = tuple(sorted((a, b))) if key in seen: continue seen.add(key) # Pad the data with spaces such that it is always MAXLEN q = '{}+{}'.format(a, b) query = q + ' ' * (MAXLEN - len(q)) ans = str(a + b) # Answers can be of maximum size DIGITS + 1 ans += ' ' * (DIGITS + 1 - len(ans)) #补位,凑够四位 if INVERT: query = query[::-1] questions.append(query) expected.append(ans) print('Total addition questions:', len(questions))
#向量化 print('Vectorization...') X = np.zeros((len(questions), MAXLEN, len(chars)), dtype=np.bool) y = np.zeros((len(questions), DIGITS + 1, len(chars)), dtype=np.bool) for i, sentence in enumerate(questions): X[i] = ctable.encode(sentence, maxlen=MAXLEN) for i, sentence in enumerate(expected): y[i] = ctable.encode(sentence, maxlen=DIGITS + 1) # Shuffle (X, y) in unison as the later parts of X will almost all be larger digits indices = np.arange(len(y)) np.random.shuffle(indices) #混淆 X = X[indices] y = y[indices] # Explicitly set apart 10% for validation data that we never train over split_at = len(X) - len(X) / 10 (X_train, X_val) = (slice_X(X, 0, split_at), slice_X(X, split_at)) (y_train, y_val) = (y[:split_at], y[split_at:]) print(X_train.shape) print(y_train.shape) print('Build model...') model = Sequential() # "Encode" the input sequence using an RNN, producing an output of HIDDEN_SIZE # note: in a situation where your input sequences have a variable length, # use input_shape=(None, nb_feature). model.add(RNN(HIDDEN_SIZE, input_shape=(MAXLEN, len(chars)))) # For the decoder's input, we repeat the encoded input for each time step model.add(RepeatVector(DIGITS + 1)) #输入 × n 的意思, 貌似就是加强效果 # The decoder RNN could be multiple layers stacked or a single layer for _ in range(LAYERS): model.add(RNN(HIDDEN_SIZE, return_sequences=True)) # For each of step of the output sequence, decide which character should be chosen model.add(TimeDistributed(Dense(len(chars)))) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # Train the model each generation and show predictions against the validation dataset for iteration in range(1, 200): print() print('-' * 50) print('Iteration', iteration) model.fit(X_train, y_train, batch_size=BATCH_SIZE, nb_epoch=1, validation_data=(X_val, y_val)) ### # Select 10 samples from the validation set at random so we can visualize errors for i in range(10): ind = np.random.randint(0, len(X_val)) rowX, rowy = X_val[np.array([ind])], y_val[np.array([ind])] preds = model.predict_classes(rowX, verbose=0) q = ctable.decode(rowX[0]) correct = ctable.decode(rowy[0]) guess = ctable.decode(preds[0], calc_argmax=False) print('Q', q[::-1] if INVERT else q) print('T', correct) print(colors.ok + '☑' + colors.close if correct == guess else colors.fail + '☒' + colors.close, guess) print('---')
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:keras rnn做加减法 - Python技术站