python pandas dataframe 行列选择,切片操作方法

下面是关于Python Pandas DataFrame 行列选择、切片操作方法的详细攻略:

1. DataFrame行列选择

1.1 按列选择

DataFrame 表示的是一张表格,而表格中的每一列都有自己的列名,我们可以通过列名来选择需要的列,所以按列选择的方法是最常用的,示例如下:

import pandas as pd

# 创建一个包含 4 列的 DataFrame
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9], 'D': [10, 11, 12]})

# 选择单一列
col1 = df['A']
print(col1)

# 选择多列
cols = df[['A', 'B']]
print(cols)

1.2 按行选择

按照行进行选择也是非常常见的需求,可以使用 .loc[] 方法进行选择,如果只需要选择一行则需要用到 .loc[] 方法的参数。示例如下:

import pandas as pd

# 创建一个包含 4 列的 DataFrame
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9], 'D': [10, 11, 12]})

# 选择单一行
row1 = df.loc[0]
print(row1)

# 选择多行
rows = df.loc[[0, 1]]
print(rows)

2. DataFrame切片操作

2.1 按照索引范围进行切片

可以使用 .iloc[] 方法来按照索引范围进行DataFrame切片,语法是df.iloc[row_index, col_index],示例如下:

import pandas as pd

# 创建一个包含 4 列的 DataFrame
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9], 'D': [10, 11, 12]})

# 选取行和列的范围进行切片
sliced_df = df.iloc[0:2, 1:3]
print(sliced_df)

2.2 按照行或列名称进行切片

.loc[] 方法可以使用行或列名称进行DataFrame切片,示例如下:

import pandas as pd

# 创建一个包含 4 列的 DataFrame
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9], 'D': [10, 11, 12]})

# 选取多行和多列进行切片
sliced_df = df.loc[[0, 1], ['B', 'C']]
print(sliced_df)

至此,关于Python Pandas DataFrame 行列选择、切片操作方法的攻略就介绍完毕了。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:python pandas dataframe 行列选择,切片操作方法 - Python技术站

(0)
上一篇 2023年5月14日
下一篇 2023年5月14日

相关文章

  • Pandas中GroupBy具体用法详解

    Pandas中GroupBy具体用法详解 在Pandas中,GroupBy是一个非常重要的功能,它被用于数据聚合、分组和汇总,可以帮助我们轻松地从数据中发现规律和趋势,更好地理解数据本身。本文将详细介绍Pandas中GroupBy的具体用法。 什么是GroupBy? GroupBy是一种数据处理的方式,用于将数据按照一定的规则分组,然后对每组数据进行特定的操…

    python 2023年5月14日
    00
  • torchxrayvision包安装过程(附pytorch1.6cpu版安装)

    安装torchxrayvision包可以通过pip命令来完成。在安装之前需要确认安装了PyTorch库,并且版本大于等于1.6。如果需要CPU版本的安装,则应当在执行pip命令的时候添加“-f https://download.pytorch.org/whl/cpu/torch_stable.html”选项,如下所示: pip install torchxr…

    python 2023年5月14日
    00
  • 用Pandas计算每组的唯一值

    首先,使用Pandas计算每组的唯一值,可以通过Pandas的groupby()方法来实现。这个方法可以按照多个列或者一个列进行分组,并对每个组进行计算。下面是关于如何使用groupby()方法获取每组唯一值的攻略: 步骤一:导入所需库 这个问题中需要使用Pandas库,因此需要先导入Pandas库。可以使用以下代码进行导入: import pandas a…

    python-answer 2023年3月27日
    00
  • 在Pandas数据框架中获取一个列的频率计数

    在 Pandas 数据框架中,我们可以使用 value_counts() 方法获取一个列的频率计数。下面是详细的攻略: 导入 Pandas 库 在使用 Pandas 的数据框架之前,我们需要导入 Pandas 库。 import pandas as pd 读取数据集 读取待处理的数据集,可以使用 Pandas 中的 read_csv() 方法。我们这里以示例…

    python-answer 2023年3月27日
    00
  • Python中的Pandas分析

    Pandas是Python中一款流行的数据分析工具,它提供了高效的数据结构和数据分析工具,使得数据分析变得更加简单和可靠。Pandas主要包含两种数据结构:Series和DataFrame。 Series Series是Pandas中的一种一维数组,可以看作是数组和字典的混合体。第一列是索引,第二列是值。Series可以使用多种方式构建: import pa…

    python-answer 2023年3月27日
    00
  • Pandas Groupby和计算平均值

    Pandas是一个强大的Python数据分析库,其中的Groupby操作可以方便地对数据进行分组,然后进行各种计算,例如汇总、平均、求和等操作。下面是详细讲解Pandas Groupby和计算平均值的完整攻略,包括实例说明: Pandas Groupby操作 Pandas的Groupby操作可以将数据按照指定的列或索引进行分组,然后针对每个组进行各种操作。首…

    python-answer 2023年3月27日
    00
  • Pandas – 从整个数据框架中剥离空白部分

    Pandas 是 Python 中一个强大的数据处理库,可以方便地对数据进行读取、写入、切片、过滤、聚合、可视化等操作。在数据处理的过程中,我们会遇到一些空白部分(如 NaN 、空字符串等),这些空白部分会对后续的数据分析和建模产生影响,因此需要对它们进行处理。本文将详细讲解如何从整个数据框架中剥离空白部分。 准备工作 在开始之前,需要先安装 Pandas …

    python-answer 2023年3月27日
    00
  • 详解将Pandas中的DataFrame类型转换成Numpy中array类型的三种方法

    我给你详细讲解一下“详解将Pandas中的DataFrame类型转换成Numpy中array类型的三种方法”。 1.使用pandas.DataFrame.values方法 首先,我们可以使用pandas.DataFrame.values方法将DataFrame转换成Numpy array。该方法返回一个二维数组,其中每一行对应于DataFrame中每一行数据…

    python 2023年5月14日
    00
合作推广
合作推广
分享本页
返回顶部