python pandas dataframe 行列选择,切片操作方法

下面是关于Python Pandas DataFrame 行列选择、切片操作方法的详细攻略:

1. DataFrame行列选择

1.1 按列选择

DataFrame 表示的是一张表格,而表格中的每一列都有自己的列名,我们可以通过列名来选择需要的列,所以按列选择的方法是最常用的,示例如下:

import pandas as pd

# 创建一个包含 4 列的 DataFrame
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9], 'D': [10, 11, 12]})

# 选择单一列
col1 = df['A']
print(col1)

# 选择多列
cols = df[['A', 'B']]
print(cols)

1.2 按行选择

按照行进行选择也是非常常见的需求,可以使用 .loc[] 方法进行选择,如果只需要选择一行则需要用到 .loc[] 方法的参数。示例如下:

import pandas as pd

# 创建一个包含 4 列的 DataFrame
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9], 'D': [10, 11, 12]})

# 选择单一行
row1 = df.loc[0]
print(row1)

# 选择多行
rows = df.loc[[0, 1]]
print(rows)

2. DataFrame切片操作

2.1 按照索引范围进行切片

可以使用 .iloc[] 方法来按照索引范围进行DataFrame切片,语法是df.iloc[row_index, col_index],示例如下:

import pandas as pd

# 创建一个包含 4 列的 DataFrame
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9], 'D': [10, 11, 12]})

# 选取行和列的范围进行切片
sliced_df = df.iloc[0:2, 1:3]
print(sliced_df)

2.2 按照行或列名称进行切片

.loc[] 方法可以使用行或列名称进行DataFrame切片,示例如下:

import pandas as pd

# 创建一个包含 4 列的 DataFrame
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9], 'D': [10, 11, 12]})

# 选取多行和多列进行切片
sliced_df = df.loc[[0, 1], ['B', 'C']]
print(sliced_df)

至此,关于Python Pandas DataFrame 行列选择、切片操作方法的攻略就介绍完毕了。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:python pandas dataframe 行列选择,切片操作方法 - Python技术站

(0)
上一篇 2023年5月14日
下一篇 2023年5月14日

相关文章

  • 在Pandas数据框架中创建NaN值的方法

    在 Pandas 数据框架中,NaN 表示缺失值。可以通过不同的方式将 NaN 插入到 DataFrame 中。 以下是在 Pandas 中创建 NaN 值的几种方式: 创建空数据框 可以使用 Pandas 的 DataFrame 函数,创建无数据的空数据框,然后将值都设置为 NaN。 import pandas as pd # 创建一个空的数据框 df =…

    python-answer 2023年3月27日
    00
  • pyinstaller使用大全

    PyInstaller 使用大全 PyInstaller 是一个非常流行的 Python 打包工具,它可以将 Python 代码和其依赖的库打包成一个可执行文件,方便我们在其他不具备 Python 环境的机器上运行程序。本文将对 PyInstaller 的基本使用方法进行详细介绍,包括安装 PyInstaller、使用 PyInstaller 打包程序、解决…

    python 2023年5月14日
    00
  • 使用Pandas选择包含特定文本的行

    使用 Pandas 选择包含特定文本的行,可以通过以下几个步骤实现: 1.导入 Pandas 库并读取数据 首先需要导入 Pandas 库并读取需要处理的数据文件,如下所示: import pandas as pd # 读取数据文件 df = pd.read_csv("data.csv") 2.使用 Pandas 中的 str 方法 Pa…

    python-answer 2023年3月27日
    00
  • Python实现把utf-8格式的文件转换成gbk格式的文件

    Python实现把utf-8格式的文件转换成gbk格式的文件攻略 准备工作 在开始编写 Python 代码之前,我们需要先确定一下: 源文件的编码格式 目标文件的编码格式 文件路径 为了方便演示,我们将在以下示例代码中使用 utf-8 编码的源文件并将其转换成 gbk 编码格式的目标文件。 代码实现 # 引入 codecs 模块 import codecs …

    python 2023年5月14日
    00
  • pandas学习之txt与sql文件的基本操作指南

    Pandas学习之txt与sql文件的基本操作指南 在Pandas中,我们可以使用read_csv()来读取.csv文件,但是如果我们需要读取其他格式的文件,该怎么办呢?本文将介绍如何使用Pandas来读取.txt和.sql文件,并进行基本的操作。 读取txt文件 我们可以使用read_table()方法来读取.txt文件。例如,我们有一个叫做sample.…

    python 2023年5月14日
    00
  • Python Pandas学习之Pandas数据结构详解

    Python Pandas学习之Pandas数据结构详解 简介 Pandas是基于NumPy的一个开源数据分析与处理库,提供了各种数据结构和处理工具,使我们能够使用Python快速处理各种数据。Pandas主要包含三种数据结构:Series、DataFrame和Panel。 Series Series是一种一维数组结构,可以保存任何数据类型。我们可以通过传递…

    python 2023年5月14日
    00
  • pyspark对Mysql数据库进行读写的实现

    下面是“pyspark对Mysql数据库进行读写的实现”的完整攻略。 1. 安装必要的库 在使用pyspark进行读写mysql数据之前,需要先安装必要的库pyspark和mysql-connector-python,具体安装过程如下: pip install pyspark pip install mysql-connector-python 2. 配置M…

    python 2023年5月14日
    00
  • Python Pandas – INNER JOIN和LEFT SEMI JOIN的区别

    首先,INNER JOIN和LEFT SEMI JOIN都是数据关联操作,用于根据一个或多个指定的联接键连接两个或多个表或数据框。它们在连接操作的结果上是不同的,下面具体讲解。 INNER JOIN INNER JOIN是一种基本的联接方式,它只返回两个表中联接键相同的行。它返回的数据包括联接键在两个表中都有的行,即“内部完全匹配”。 例如,有两个数据框df…

    python-answer 2023年3月27日
    00
合作推广
合作推广
分享本页
返回顶部