pytorch实现好莱坞明星识别的示例代码

好莱坞明星识别是一个常见的计算机视觉问题,可以使用PyTorch实现。在本文中,我们将介绍如何使用PyTorch实现好莱坞明星识别,并提供两个示例说明。

示例一:使用PyTorch实现好莱坞明星识别

我们可以使用PyTorch实现好莱坞明星识别。示例代码如下:

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import datasets, transforms, models

# 定义超参数
num_epochs = 10
batch_size = 8
learning_rate = 0.001

# 加载数据集
data_transforms = {
    'train': transforms.Compose([
        transforms.RandomResizedCrop(224),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
    'val': transforms.Compose([
        transforms.Resize(256),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
}

data_dir = 'path/to/data'
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
                                          data_transforms[x])
                  for x in ['train', 'val']}
dataloaders = {x: DataLoader(image_datasets[x], batch_size=batch_size,
                             shuffle=True, num_workers=4)
              for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_names = image_datasets['train'].classes

# 加载预训练模型
model = models.resnet18(pretrained=True)
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, len(class_names))
model = model.to(device)

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=learning_rate, momentum=0.9)

# 训练模型
for epoch in range(num_epochs):
    for phase in ['train', 'val']:
        if phase == 'train':
            model.train()
        else:
            model.eval()

        running_loss = 0.0
        running_corrects = 0

        for inputs, labels in dataloaders[phase]:
            inputs = inputs.to(device)
            labels = labels.to(device)

            optimizer.zero_grad()

            with torch.set_grad_enabled(phase == 'train'):
                outputs = model(inputs)
                _, preds = torch.max(outputs, 1)
                loss = criterion(outputs, labels)

                if phase == 'train':
                    loss.backward()
                    optimizer.step()

            running_loss += loss.item() * inputs.size(0)
            running_corrects += torch.sum(preds == labels.data)

        epoch_loss = running_loss / dataset_sizes[phase]
        epoch_acc = running_corrects.double() / dataset_sizes[phase]

        print('{} Loss: {:.4f} Acc: {:.4f}'.format(
            phase, epoch_loss, epoch_acc))

print('Finished Training')

在上述代码中,我们首先加载了数据集,并定义了一个预训练的ResNet18模型。然后,我们定义了损失函数和优化器,并使用训练集训练模型。最后,我们使用测试集测试模型的准确率。

示例二:使用PyTorch实现好莱坞明星识别(迁移学习)

除了使用预训练模型,我们还可以使用迁移学习来实现好莱坞明星识别。示例代码如下:

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import datasets, transforms, models

# 定义超参数
num_epochs = 10
batch_size = 8
learning_rate = 0.001

# 加载数据集
data_transforms = {
    'train': transforms.Compose([
        transforms.RandomResizedCrop(224),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
    'val': transforms.Compose([
        transforms.Resize(256),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
}

data_dir = 'path/to/data'
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
                                          data_transforms[x])
                  for x in ['train', 'val']}
dataloaders = {x: DataLoader(image_datasets[x], batch_size=batch_size,
                             shuffle=True, num_workers=4)
              for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_names = image_datasets['train'].classes

# 加载预训练模型
model_ft = models.resnet18(pretrained=True)
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs, len(class_names))

# 冻结模型的所有层
for param in model_ft.parameters():
    param.requires_grad = False

# 解冻最后一层
for param in model_ft.fc.parameters():
    param.requires_grad = True

model_ft = model_ft.to(device)

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer_ft = optim.SGD(model_ft.fc.parameters(), lr=learning_rate, momentum=0.9)

# 训练模型
for epoch in range(num_epochs):
    for phase in ['train', 'val']:
        if phase == 'train':
            model_ft.train()
        else:
            model_ft.eval()

        running_loss = 0.0
        running_corrects = 0

        for inputs, labels in dataloaders[phase]:
            inputs = inputs.to(device)
            labels = labels.to(device)

            optimizer_ft.zero_grad()

            with torch.set_grad_enabled(phase == 'train'):
                outputs = model_ft(inputs)
                _, preds = torch.max(outputs, 1)
                loss = criterion(outputs, labels)

                if phase == 'train':
                    loss.backward()
                    optimizer_ft.step()

            running_loss += loss.item() * inputs.size(0)
            running_corrects += torch.sum(preds == labels.data)

        epoch_loss = running_loss / dataset_sizes[phase]
        epoch_acc = running_corrects.double() / dataset_sizes[phase]

        print('{} Loss: {:.4f} Acc: {:.4f}'.format(
            phase, epoch_loss, epoch_acc))

print('Finished Training')

在上述代码中,我们首先加载了数据集,并定义了一个预训练的ResNet18模型。然后,我们冻结了模型的所有层,并解冻了最后一层。接着,我们定义了损失函数和优化器,并使用训练集训练模型。最后,我们使用测试集测试模型的准确率。

总结

本文介绍了如何使用PyTorch实现好莱坞明星识别,并提供了两个示例说明。我们可以使用预训练模型或迁移学习来实现好莱坞明星识别。我们可以使用PyTorch的nn.Module类定义模型,使用nn.CrossEntropyLoss()函数定义损失函数,使用optim.SGD()函数定义优化器,使用backward()函数进行反向传播,使用step()函数更新参数。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:pytorch实现好莱坞明星识别的示例代码 - Python技术站

(0)
上一篇 2023年5月15日
下一篇 2023年5月15日

相关文章

  • Pytorch 资料汇总(持续更新)

    1. Pytorch 论坛/网站 PyTorch 中文网 python优先的深度学习框架 Pytorch中文文档 Pythrch-CN文档地址  PyTorch 基礎篇   2. Pytorch 书籍 深度学习入门之PyTorch 深度学习框架PyTorch:入门与实践   3. Pytorch项目实现 the-incredible-pytorch  Pyt…

    PyTorch 2023年4月8日
    00
  • PyTorch中apex安装方式和避免踩坑

    PyTorch中apex安装方式和避免踩坑的完整攻略 1. 什么是apex apex是NVIDIA开发的一个PyTorch扩展库,它提供了一些混合精度训练和分布式训练的工具,可以加速训练过程并减少显存的使用。 2. 安装apex 安装apex需要满足以下条件: PyTorch版本 >= 1.0 CUDA版本 >= 9.0 以下是安装apex的步骤…

    PyTorch 2023年5月15日
    00
  • Pytorch入门之VAE

    关于自编码器的原理见另一篇博客 : 编码器AE & VAE 这里谈谈对于变分自编码器(Variational auto-encoder)即VAE的实现。   1. 稀疏编码 首先介绍一下“稀疏编码”这一概念。        早期学者在黑白风景照片中可以提取到许多16*16像素的图像碎片。而这些图像碎片几乎都可由64种正交的边组合得到。而且组合出一张碎…

    2023年4月8日
    00
  • PyTorch 多GPU下模型的保存与加载(踩坑笔记)

    这几天在一机多卡的环境下,用pytorch训练模型,遇到很多问题。现总结一个实用的做实验方式: 多GPU下训练,创建模型代码通常如下: os.environ[‘CUDA_VISIBLE_DEVICES’] = args.cuda model = MyModel(args) if torch.cuda.is_available() and args.use_g…

    PyTorch 2023年4月8日
    00
  • pytorch自定义初始化权重的方法

    PyTorch是一个流行的深度学习框架,它提供了许多内置的初始化权重方法。但是,有时候我们需要自定义初始化权重方法来更好地适应我们的模型。在本攻略中,我们将介绍如何自定义初始化权重方法。 方法1:使用nn.Module的apply()函数 我们可以使用nn.Module的apply()函数来自定义初始化权重方法。apply()函数可以递归地遍历整个模型,并对…

    PyTorch 2023年5月15日
    00
  • 浅谈PyTorch中in-place operation的含义

    在PyTorch中,in-place operation是指对Tensor进行原地操作,即在不创建新的Tensor的情况下,直接修改原有的Tensor。本文将浅谈PyTorch中in-place operation的含义,并提供两个示例说明。 1. PyTorch中in-place operation的含义 在PyTorch中,in-place operat…

    PyTorch 2023年5月15日
    00
  • Jupyter Notebook远程登录及密码设置操作

    Jupyter Notebook远程登录及密码设置操作 Jupyter Notebook是一种非常流行的交互式计算环境,它可以让用户在浏览器中编写和运行代码。本文将介绍如何在远程服务器上设置Jupyter Notebook,并设置密码以保护您的笔记本。 远程登录Jupyter Notebook 要在远程服务器上登录Jupyter Notebook,您需要执行…

    PyTorch 2023年5月15日
    00
  • 解说pytorch中的model=model.to(device)

    这篇文章主要介绍了pytorch中的model=model.to(device)使用说明,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教 这代表将模型加载到指定设备上。 其中,device=torch.device(“cpu”)代表的使用cpu,而device=torch.device(“cuda”)则代表的使用GPU。 当我…

    PyTorch 2023年4月8日
    00
合作推广
合作推广
分享本页
返回顶部