一文搞懂Python中Pandas数据合并

我来为你详细讲解一下Python中Pandas数据合并的攻略。

1. 简介

Pandas是一个Python第三方库,提供了一种高效、便捷的数据处理工具,常用于数据清洗、分析和可视化。数据合并是数据处理过程中的常见操作之一,Pandas提供了多种数据合并手段,具体如下:

  • concat:可以将两个或多个DataFrame对象进行简单的连接操作;
  • merge:可以根据一列或多列进行连接操作;
  • join:可以根据DataFrame的索引进行连接操作。

2. concat操作

concat操作可以将两个或多个DataFrame对象沿着某个轴进行简单的连接操作,语法如下:

pd.concat(objs, axis=0, ignore_index=False)
  • objs:需要连接的DataFrame对象,可以是列表、字典或Series对象;
  • axis:连接的轴方向,0表示纵向,1表示横向,默认为0;
  • ignore_index:是否忽略原来的索引,重置索引,默认为False。

示例1:纵向连接

假设我们有两个DataFrame对象df1和df2,如下所示:

df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
                    'B': ['B0', 'B1', 'B2', 'B3'],
                    'C': ['C0', 'C1', 'C2', 'C3'],
                    'D': ['D0', 'D1', 'D2', 'D3']})
df2 = pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'],
                    'B': ['B4', 'B5', 'B6', 'B7'],
                    'C': ['C4', 'C5', 'C6', 'C7'],
                    'D': ['D4', 'D5', 'D6', 'D7']})

我们可以使用concat将它们沿着纵向进行连接:

df3 = pd.concat([df1, df2], axis=0, ignore_index=True)
print(df3)

输出结果为:

    A   B   C   D
0  A0  B0  C0  D0
1  A1  B1  C1  D1
2  A2  B2  C2  D2
3  A3  B3  C3  D3
4  A4  B4  C4  D4
5  A5  B5  C5  D5
6  A6  B6  C6  D6
7  A7  B7  C7  D7

示例2:横向连接

假设我们有两个DataFrame对象df1和df2,如下所示:

df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
                    'B': ['B0', 'B1', 'B2', 'B3']})
df2 = pd.DataFrame({'C': ['C0', 'C1', 'C2', 'C3'],
                    'D': ['D0', 'D1', 'D2', 'D3']})

我们可以使用concat将它们沿着横向进行连接:

df3 = pd.concat([df1, df2], axis=1)
print(df3)

输出结果为:

    A   B   C   D
0  A0  B0  C0  D0
1  A1  B1  C1  D1
2  A2  B2  C2  D2
3  A3  B3  C3  D3

3. merge操作

merge操作可以根据一列或多列进行连接操作,语法如下:

pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False)
  • left:左侧的DataFrame对象;
  • right:右侧的DataFrame对象;
  • how:连接方式,包括'left'、'right'、'outer'、'inner',默认为'inner';
  • on:连接的列名,如果左右两个DataFrame的列名不同,需要分别指定;
  • left_on:左侧的连接列名;
  • right_on:右侧的连接列名;
  • left_index:是否使用左侧的索引作为连接键;
  • right_index:是否使用右侧的索引作为连接键。

示例3:基于一列进行连接

假设我们有两个DataFrame对象df1和df2,如下所示:

df1 = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
                    'A': ['A0', 'A1', 'A2', 'A3'],
                    'B': ['B0', 'B1', 'B2', 'B3']})
df2 = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
                    'C': ['C0', 'C1', 'C2', 'C3'],
                    'D': ['D0', 'D1', 'D2', 'D3']})

我们可以使用merge将它们基于key列进行连接:

df3 = pd.merge(df1, df2, on='key')
print(df3)

输出结果为:

  key   A   B   C   D
0  K0  A0  B0  C0  D0
1  K1  A1  B1  C1  D1
2  K2  A2  B2  C2  D2
3  K3  A3  B3  C3  D3

示例4:基于多列进行连接

假设我们有两个DataFrame对象df1和df2,如下所示:

df1 = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'],
                    'key2': ['K0', 'K1', 'K0', 'K1'],
                    'A': ['A0', 'A1', 'A2', 'A3'],
                    'B': ['B0', 'B1', 'B2', 'B3']})
df2 = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'],
                    'key2': ['K0', 'K0', 'K0', 'K0'],
                    'C': ['C0', 'C1', 'C2', 'C3'],
                    'D': ['D0', 'D1', 'D2', 'D3']})

我们可以使用merge将它们基于key1和key2两列进行连接:

df3 = pd.merge(df1, df2, on=['key1', 'key2'])
print(df3)

输出结果为:

  key1 key2   A   B   C   D
0   K0   K0  A0  B0  C0  D0
1   K1   K0  A2  B2  C1  D1
2   K1   K0  A2  B2  C2  D2
3   K2   K1  A3  B3  C3  D3

4. join操作

join操作可以根据DataFrame的索引进行连接操作,语法如下:

left.join(right, how='outer')
  • left:左侧的DataFrame对象;
  • right:右侧的DataFrame对象;
  • how:连接方式,包括'left'、'right'、'outer'、'inner',默认为'outer'。

示例5:基于索引进行连接

假设我们有两个DataFrame对象df1和df2,如下所示:

df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
                    'B': ['B0', 'B1', 'B2', 'B3']},
                    index=['K0', 'K1', 'K2', 'K3'])
df2 = pd.DataFrame({'C': ['C0', 'C1', 'C2', 'C3'],
                    'D': ['D0', 'D1', 'D2', 'D3']},
                    index=['K0', 'K1', 'K2', 'K3'])

我们可以使用join将它们基于索引进行连接:

df3 = df1.join(df2)
print(df3)

输出结果为:

     A   B   C   D
K0  A0  B0  C0  D0
K1  A1  B1  C1  D1
K2  A2  B2  C2  D2
K3  A3  B3  C3  D3

以上就是Python中Pandas数据合并的完整攻略。希望对你有所帮助。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:一文搞懂Python中Pandas数据合并 - Python技术站

(0)
上一篇 2023年5月14日
下一篇 2023年5月14日

相关文章

  • elasticsearch索引index数据功能源码示例

    让我来为你详细讲解“elasticsearch索引index数据功能源码示例”的完整攻略。 1. 什么是Elasticsearch索引? 在Elasticsearch中,索引被称为数据存储的容器。它是将数据储存到Elasticsearch中的基本单元。我们可以将索引理解为数据库中的表,数据都是存储在表中的。在Elasticsearch中,我们可以通过索引存储…

    python 2023年6月13日
    00
  • Python Pandas数据分析工具用法实例

    PythonPandas数据分析工具用法实例 介绍 Pandas是一个Python库,经常用于数据分析和数据操作。它提供了许多强大的工具,用于处理和操作数据,包括读取、分析和操作数据。 在本文中,将介绍Pandas的一些基本用法,如数据读取、数据清洗和数据统计分析。本文适合初学者。 安装 使用pip工具安装pandas库: pip install panda…

    python 2023年5月14日
    00
  • 如何在Python中计算滚动相关度

    首先,我们需要明确什么是滚动相关度。滚动相关度是一种衡量两个网页滚动位置之间的相似性的指标,它可以用于衡量用户在两个不同的网页上滚动位置的相似程度。滚动相关度越高,表示两个网页在滚动位置上越相似。 计算滚动相关度需要获取两个页面的滚动位置,并对它们进行比较。我们可以使用Python的Selenium库来获取网页的滚动位置。下面是一个示例代码片段: from …

    python-answer 2023年3月27日
    00
  • Pandas处理DataFrame稀疏数据及维度不匹配数据分析详解

    【Pandas处理DataFrame稀疏数据及维度不匹配数据分析详解】攻略 1. 概述 在数据分析和机器学习的应用中,我们往往会遇到稀疏数据和维度不匹配的情况。Pandas是一个功能强大的数据处理工具,可以帮助我们解决这些问题。本攻略将详细讲解如何使用Pandas处理DataFrame稀疏数据及维度不匹配数据分析。 2. 处理稀疏数据 当我们处理的数据集非常…

    python 2023年5月14日
    00
  • Python如何提取csv数据并筛选指定条件数据详解

    以下是“Python如何提取csv数据并筛选指定条件数据”的详细攻略: 步骤1:导入必要的库 在使用Python提取和筛选CSV数据之前,需要先导入相关的库。 import pandas as pd 在此示例中,我们使用pandas库来处理CSV数据。 步骤2:读取CSV文件 接下来,需要将CSV文件读取到Python中。在此示例中,我们将使用pd.read…

    python 2023年5月14日
    00
  • Pandas提取数据的三种方式

    下面是Pandas提取数据的三种方式的完整攻略,共包含三种方法: 1. 按行、按列提取数据方法 按行提取数据 Pandas可以通过 loc 和 iloc 方法按行提取数据。 其中,loc 方法使用标签来定位数据,iloc 方法使用索引来定位数据。以下是示例代码: import pandas as pd # 使用pandas读取本地csv文件 df = pd.…

    python 2023年5月14日
    00
  • python中pandas操作apply返回多列的实现

    在python的pandas中,apply函数是一个常用的操作函数,它可以对数据框进行行或列或元素的操作,可以返回一个标量、一个Series或一个新的DataFrame。同样地,apply也支持返回多列。 实现方法 我们需要定义一个要被apply的函数,并使用apply函数调用该函数,代码如下: def func(row): # do something r…

    python 2023年5月14日
    00
  • 代码总结Python2 和 Python3 字符串的区别

    代码总结Python2和Python3字符串的区别 Python 2 字符串 在 Python 2 中,字符串有两种类型:str 和 unicode。str 类型表示基于字节的字符串,而 unicode 类型表示基于 Unicode 的字符串。Python 2 中默认的字符串类型是 str 类型,这意味着在处理文本时需要确保使用正确的编码,否则可能会导致编码…

    python 2023年5月14日
    00
合作推广
合作推广
分享本页
返回顶部