Opencv 简单图像识别第三步

以下是关于Opencv简单图像识别第三步的详细攻略。

Opencv简单图像识别第三步基本原理

Opencv简单图像识别第步是指通过Opencv库的机器学习算法对处理后的图像进行特征匹配,从而实现对目标图像的识别。常用的机器学习算法包括K、SVM、神经网络等。

Opencv简单图像识别第三步的步骤

  1. 读取训练数据
  2. 提训练数据的特征
  3. 训练机器学习模型
  4. 读取测试数据
  5. 提取测试数据的特征
  6. 使用机器学习模型进行预测

示例说明

下面是两个Opencv简单图像识别第三步的示例:

示例1:KNN算法对手写数字进行识别

import cv2
import numpy as np

# 读取训练数据
digits = cv2.imread('digits.png', 0)

# 分割训练数据
images = [np.hsplit(row, 100) for row in np.vsplit(digits, 50)]
train_data = np.array(images).reshape(-1, 400).astype(np.float32)

# 创建标签
train_labels = np.repeat(np.arange(10), 500)

# 训练KNN模型
knn = cv2.ml.KNearest_create()
knn.train(train_data, cv2.ml.ROW_SAMPLE, train_labels)

# 读取测试数据
test_image = cv2.imread('test.png', 0)

# 提取测试数据的特征
test_data = np.array([test_image.reshape(1, 400).astype(float32)])

# 使用KNN模型进行预测
ret, result, neighbours, dist = knn.findNearest(test_data, k=5)

# 显示预测结果
print(result)

运行该代码,系统会输出预测结果。

示例2:使用SVM算对图像进行分类

import cv2
import numpy as np

# 读取训练数据
train_data = np.loadtxt('train_data.txt', dtype=np.float32)
train_labels =.loadtxt('train_labels.txt', dtype=np.int32)

# 训练SVM模型
svm = cv2.ml.SVM_create()
svm.setType(cv2.ml.SVM_C_SVC)
svm.setKernel(cv2.ml.SVM_LINEAR)
svm.setTermCriteria((cv2.TERM_CRITERIA_MAX_ITER, 100, 1e-6))
svm.train(train_data, cv2.ml.ROW_SAMPLE, train_labels)

# 读取测试数据
test_data = np('test_data.txt', dtype=np.float32)

# 使用SVM模型进行预测
ret, result = svm.predict(test_data)

# 显示预测结果
print(result)

运行该代码,系统会输出预测结果。

结论

Opencv简单图像识别第三步是像识的重要步骤,通过对处理后的图像进行特征匹配,从而实现对目标图像的识别。通过本文介绍,该已经了解Opencv简单图像识别第三步的基本原理、步骤和两个示例说明据需要灵活使用。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Opencv 简单图像识别第三步 - Python技术站

(0)
上一篇 2023年5月10日
下一篇 2023年5月10日

相关文章

  • Opencv 膨胀

    Opencv 膨胀是一种常用的图像处理技术,可以用于图像的形态学处理,例如去除噪声、填充空洞、分离物体等。本文将详细讲解Opencv 膨胀的完整攻略,包括基本原理、方法和两个示例。 Opencv 膨胀的基本原理 Opencv 膨胀是一种基于结构元素的图像处理技术,通过图像中的像素进行膨胀,可以扩大物体的面积,填充空洞,去除噪声等。具体实现方法包括: cv2.…

    python 2023年5月10日
    00
  • Opencv 傅立叶变换低通滤波

    Opencv 傅立叶变换低通滤波的完整攻略 Opencv 傅立叶变换低通滤波是一种常见的图像处理技术,可以用于图像的去噪、平滑等操作。本文将详细讲解Opencv 傅立叶变换低通滤波的完整攻略,包括基本原理、方法和两个示例说明。 Opencv 傅立叶变换低通滤波的基本原理 Opencv 傅立叶变换低通滤波是一种基于傅立叶变换的图像处理技术,可以通过对图像进行频…

    python 2023年5月10日
    00
  • Opencv 差分滤波器

    OpenCV 差分滤波器 OpenCV 差分滤波器是一种非线性滤波器,可以用于图像边缘检测和轮廓提取等应用。差分滤波器的基本思想是对像中每个素点取其邻域内像素的差值作该像素点的值。本文将介绍OpenCV 差分滤波器的基本原理使用方法,并提供两个示例。 OpenCV 差分滤波器的基本原理 OpenCV 差分滤波器是一种非线性波器,可以用于图像边缘检测和轮廓提取…

    python 2023年5月10日
    00
  • Opencv 直方图归一化

    以下是关于Opencv直方图归一化的详细攻略。 Opencv直方图归一化基本原理 Opencv直方图归一化是一种常用的图像处理技术,用于对图像进行直方图均衡化。具体实现方法包括: 计算图像的直方图 对直方图进行归一化处理 对图像进行直方图均衡化 直方图归一化可以用于图像增强、图像分割等应用。 Opencv直方图归一化的使用方法 Opencv库提供 cv2.n…

    python 2023年5月10日
    00
  • Opencv通道交换

    OpenCV通道交换 OpenCV通道交换是指将图像的通道顺序进行调整,可以用于图像处理和分析中的各种应用场景。通道交换可以通过OpenCV库中的函数实现,本文将介绍通道交换的基本概念和使用方法。 通道交换的基本概念 在OpenCV中,图像通常以BGR或RGB的顺序存储的,即每个像素点由三个通道组成,分别表示蓝色、绿色和红色。通道交换是指将这三个通道的顺序进…

    python 2023年5月10日
    00
  • Opencv 直方图均衡化

    OpenCV 直方图均衡化 OpenCV 直方图均衡化是一种用于增强图像对比度的技术,可以使图像的亮度分布更加均匀,从而提高图像的视觉效果。本文将介绍OpenCV 直方图均衡化的基本原理和使用方法,并提供两个示例。 OpenCV 直方图均衡化的基本理 OpenCV 直方图均衡化基本原理是将图像的像素值进行重新分配,使得图像的亮度分布更加均匀。具实现方法包: …

    python 2023年5月10日
    00
  • Opencv 简单图像识别第四步

    以下是关于Opencv简单图像识别第四步的详细攻略。 Opencv简单图像识别第四步的基本原理 Opencv简单图像识别第四步是指通过对模型进行评估,来判断模型的性能和准确度。用的评估指标包括准确率、召回、F1值等。 Opencv简单图像识别第四步的步骤 准备测试数据和测试标签 使用训练好的模型进行预测 计算评估指标 示例说明 下面是两个Opencv简单图像…

    python 2023年5月10日
    00
  • Opencv 直方图

    OpenCV 直方图 OpenCV 直方图是一种用于图像处理和计算机视觉的重要工具,可以用于图像增强、颜色分析、图像分割等应用。本文将介绍OpenCV 直方图的基本原理和使用方法,并提供两个示例。 OpenCV 直方图的基本原理 OpenCV 直方图是一种用于图像处理和计算机视觉的重要工具,可以用于图像增强、颜色分析、图像分割等应用。直方图是对图像像素值的统…

    python 2023年5月10日
    00
合作推广
合作推广
分享本页
返回顶部