Java/Web调用Hadoop进行MapReduce的完整攻略涉及以下步骤:
-
准备Hadoop集群
在进行Java/Web调用Hadoop进行MapReduce前,首先需要准备好Hadoop集群环境。Hadoop集群环境的准备可以参考Hadoop官方文档或其他网络资料。 -
编写MapReduce程序
MapReduce是Hadoop中一种经典的计算框架,用于处理大规模数据。编写MapReduce程序需要实现Mapper和Reducer两个组件。下面是一个WordCount的示例程序:
public class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());
context.write(word, one);
}
}
}
public class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
context.write(key, new IntWritable(sum));
}
}
-
将MapReduce程序打包
编写好MapReduce程序后,需要将其打包成一个可执行的Jar包。在Eclipse中可以使用Export功能来打包。 -
通过Java程序执行MapReduce
通过Java程序执行MapReduce需要使用Hadoop中提供的API,下面是一个简单的Java API调用示例:
public class WordCount {
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(WordCountMapper.class);
job.setReducerClass(WordCountReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
- 通过Web程序执行MapReduce
通过Web程序执行MapReduce需要将打包好的Jar包上传到Hadoop集群中,并调用Hadoop的API来执行MapReduce任务。下面是一个简单的Web调用MapReduce的示例代码:
public class WordCountServlet extends HttpServlet {
public void doGet(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException {
response.setContentType("text/html");
PrintWriter out = response.getWriter();
try {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(WordCountMapper.class);
job.setReducerClass(WordCountReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path("input"));
FileOutputFormat.setOutputPath(job, new Path("output"));
job.waitForCompletion(true);
out.println("MapReduce finished successfully.");
} catch (Exception e) {
out.println("MapReduce failed with error message:" + e.getMessage());
} finally {
out.close();
}
}
}
以上示例中,第一个示例演示了如何通过Java程序调用MapReduce,将文本中的单词统计出现次数,并输出到指定路径。第二个示例演示了如何通过Web程序调用MapReduce,完成同样的任务,并通过Web页面来显示任务执行情况。
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Java/Web调用Hadoop进行MapReduce示例代码 - Python技术站