from keras.datasets import mnist (train_images,train_labels),(test_images,test_labels)=mnist.load_data()
此处会报 SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed 错误
通过下面命令解决
> cd "/Applications/Python 3.7/" > sudo "./Install Certificates.command"
载入并训练数据集
from keras.datasets import mnist (train_images,train_labels),(test_images,test_labels)=mnist.load_data() from keras import models from keras import layers network = models.Sequential() #准备网络 network.add(layers.Dense(512,activation='relu',input_shape=(28*28,))) network.add(layers.Dense(10,activation='softmax')) network.compile(optimizer='rmsprop',loss='categorical_crossentropy',metrics=['accuracy']) #准备图像数据 train_images = train_images.reshape((60000,28*28)) train_images = train_images.astype('float32') /255 test_images = test_images.reshape((10000,28*28)) test_images = test_images.astype('float32') /255 #准备标签 from keras.utils import to_categorical train_labels = to_categorical(train_labels) test_labels = to_categorical(test_labels) #训练数据 network.fit(train_images,train_labels,epochs=5,batch_size=128) # 测试性能 test_loss,test_acc = network.evaluate(test_images,test_labels) print('test_acc:',test_acc)
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:keras加载mnist数据集 - Python技术站