遗传算法python版

下面是关于“遗传算法Python版”的详细讲解。

1. 遗传算法的基本原理

遗传算法是一种基于自然选择和遗传学原理的优化算法,它通过模拟生物进化过程来寻找最优解。遗传算法的基本流程如下:

  1. 初始化种群:随机生成一组初始解作为种群。
  2. 选择:根据适应度函数选择一部分优秀的个体作为父代。
  3. 交叉:将父代个进行交叉操作,生成新的子代个体。
  4. 变异:对子代个体进行变异操作,引入新的基因。
  5. 评估:计算每个个体的适应度值。
  6. 选择:根据应度函数选择一部分优秀的个体为下一代种群。
  7. 终止条件:达到预设的终止条件,如迭代次数、适应度值等。

2. 遗传算法的Python实现

以下是遗传算法的Python实现示例:

import random

# 适应度函数
def fitness(solution):
    return sum(solution)

# 初始化种群
def init_population(population_size, solution_size):
    population = []
    for i in range(population_size):
        solution = [random.randint(0, 1) for j in range(solution_size)]
        population.append(solution)
    return population

# 选择
def selection(population, fitness_func, num_parents):
    fitness_values = [fitness_func(solution) for solution in population]
    parents = []
    for i in range(num_parents):
        max_fitness_index = fitness_values.index(max(fitness_values))
        parents.append(population[max_fitness_index])
        fitness_values[max_fitness_index] = -1
    return parents

# 交叉
def crossover(parents, offspring_size):
    offspring = []
    for i in range(offspring_size):
        parent1_index = i % len(parents)
        parent2_index = (i+1) % len(parents)
        offspring.append(parents[parent1_index][:len(parents[parent1_index])//2] + parents[parent2_index][len(parents[parent2_index])//2:])
    return offspring

# 变异
def mutation(offspring_crossover):
    for i in range(len(offspring_crossover)):
        random_index = random.randint(0, len(offspring_crossover[i])-1)
        if offspring_crossover[i][random_index] == 0:
            offspring_crossover[i][random_index] = 1
        else:
            offspring_crossover[i][random_index] = 0
    return offspring_crossover

# 遗传算法
def genetic_algorithm(population_size, solution_size, num_parents, num_generations):
    population = init_population(population_size, solution_size)
    for i in range(num_generations):
        parents = selection(population, fitness, num_parents)
        offspring_crossover = crossover(parents, population_size - num_parents)
        offspring_mutation = mutation(offspring_crossover)
        population = parents + offspring_mutation
    fitness_values = [fitness(solution) for solution in population]
    max_fitness_index = fitness_values.index(max(fitness_values))
    return population[max_fitness_index]

在这个示例中,我们定义了一个genetic_algorithm()函数,它接收四个参数:种群大小population_size、解的大小solution_size、父代个数num_parents和迭代次数num_generations。我们首先使用init_population()函数初始化种群,然后进行迭代。在每次迭代中,我们使用selection()函数选择一部分优秀的个体作为父代,然后使用crossover()函数进行交叉操作,生成新的子代个体。接着,我们使用mutation()函数对子代个体进行变异操作,引入新的基因。最后,我们将父代和子代合并成新的种群,并计算每个个体的适应度值。在所有迭代中,我们选择适应度值最大的个体作为最终解。

以下是使用genetic_algorithm()函数求解最大值问题的示例:

solution_size = 10
population_size = 100
num_parents = 20
num_generations = 100

solution = genetic_algorithm(population_size, solution_size, num_parents, num_generations)
print(solution)

在这个示例中,我们使用genetic_algorithm()函数求解一个大小为10的二进数的最大值问题。我们设置种群大小为100,父代个数为20,迭代次数为100。最后,我们输出求解得到的最优解。

输出结果为:

[1, 1, 1, 1, 1, 1, 1, 1 1, 1]

以下是使用遗传算法解决TSP问题的Python示例:

import random
import numpy as np
import matplotlib.pyplot as plt

# 读取城市坐
def read_cities(filename):
    cities = []
    with open(filename, 'r') as f:
        for line in f:
            city = line.strip().split(' ')
            cities.append((float(city[1]), float(city[2])))
    return cities

# 计算距离矩阵
def distance_matrix(cities):
    n = len(cities)
    dist_matrix = np.zeros((n, n))
    for i in range(n):
        for j in range(n):
            if i != j:
 dist_matrix[i][j] = np.sqrt((cities[i][0]-cities[j][0])**2 + (cities[i][1]-cities[j][1])**2)
    return dist_matrix

# 计算路径长度
def path_length(path, dist):
    length = 0
    for i in range(len(path)-1):
        length += dist_matrix[path[i]][path[i+1]]
    length += dist_matrix[path[-1]][path[0]]
    return length

# 初始化种群
def init_population(population_size, n_cities):
    population = []
    for i in range(population_size):
        path = list(range(n_cities))
        random.shuffle(path)
        population.append(path)
    return population

# 选择
def selection(population, fitness_func, num_parents):
    fitness_values = [fitness_func(solution) for solution in population]
    parents = []
    for i in range(num_parents):
        max_fitness_index = fitness_values.index(max(fitness_values))
        parents.append(population[max_fitness_index])
        fitness_values[max_fitness_index] = -1
    return parents

# 交叉
def crossover(parents, offspring_size):
    offspring = []
    for i in range(offspring_size):
        parent1_index = i % len(parents)
        parent2_index = (i+1) % len(parents)
        offspring.append(parents[parent1_index][:len(parents[parent1_index])//2] + [x for x in parents[parent2_index] if x not in parents[parent1_index][:len(parents[parent1_index])//2]])
    return offspring

# 变异
def mutation(offspring_crossover):
    for i in range(len(offspring_crossover)):
        random_index1 = random.randint(0, len(offspring_crossover[i])-1)
        random_index2 = random.randint(0, len(offspring_crossover[i])-1)
        offspring_crossover[i][random_index1], offspring_crossover[i][random_index2] = offspring_crossover[i][random_index2], offspring_crossover[i][random_index1]
    return offspring_crossover

# 遗传算法
def genetic_algorithm(population_size, num_parents, num_generations, dist_matrix):
    n_cities = len(dist_matrix)
    population = init_population(population_size, n_cities)
    fitness_values = [1/path_length(solution, dist_matrix) for solution in population]
    best_fitness_values = []
    for i in range(num_generations):
        parents = selection(population, lambda x: 1/path_length(x, dist_matrix), num_parents)
        offspring_crossover = crossover(parents, population_size - num_parents)
        offspring_mutation = mutation(offspring_crossover)
        population = parents + offspring_mutation
        fitness_values = [1/path_length(solution, dist_matrix) for solution in population]
        best_fitness_values.append(max(fitness_values))
    best_solution_index = fitness_values.index(max(fitness_values))
    best_solution = population[best_solution_index]
    return best_solution, best_fitness_values

# 绘制结果
def plot_result(cities, solution):
    x = [city[0] for city in cities]
    y = [city[1] for city in cities]
    plt.plot(x, y, 'o')
    for i in range(len(solution)-1):
        plt.plot([cities[solution[i]][0], cities[solution[i+1]][0]], [cities[solution[i]][1], cities[solution[i+1]][1]], 'k-')
    plt.plot([cities[solution[-1]][0], cities[solution[0]][0]], [cities[solution[-1]][1], cities[solution[0]][1]], 'k-')
    plt.show()

# 主函数
if __name__ == '__main__':
    cities = read_cities('cities.txt')
    dist_matrix = distance_matrix(cities)
    best_solution, best_fitness_values = genetic_algorithm(100, 20, 100, dist_matrix)
    print('Best solution:', best_solution)
    print('Best fitness value:', 1/path_length(best_solution, dist_matrix))
    plot_result(cities, best_solution)

在这个示例中,我们使用遗传算法解决TSP问题。我们首先使用read_cities()函数读取城市坐标,然后使用distance_matrix()函数算距离矩阵。接着,我们定义了一个genetic_algorithm()函数,它接收四个参数:种群大小population_size、父代个数num_parents、迭代次数num_generations和距离矩阵dist_matrix。我们使用init_population()函数初始化种群,然后进行迭代。在每次迭代中,我们使用selection()函数选择一部分优秀的个作为父代,然后使用crossover()函数进行交叉操作,生成新的子代个体。接着,我们使用mutation()函数对子代个体进行变异操作,引入新的基因。最后,我们计算每个个体的适应度值,并选择适应度值最大的个体作为最终解。最后,我们使用plot_result()函数绘制结果。

3. 总结

遗传算法是一种基于自然选择和遗传学原理的优化算法,它通过模拟生物进化过程来寻找最优解。在Python中,我们可以使用随机数生成、列表操作等基本语言特性来实现遗传算法。遗传算法的应用非常广泛,可以用于优化、机器学习、人工智能等领域。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:遗传算法python版 - Python技术站

(0)
上一篇 2023年5月13日
下一篇 2023年5月13日

相关文章

  • 快速搭建python爬虫管理平台

    下面是详细讲解“快速搭建python爬虫管理平台”的完整攻略。 准备工具 在开始之前,你需要准备以下工具:- Python 3.x- Flask- MongoDB- PyMongo 步骤一:创建Flask应用 首先,我们需要创建一个Flask应用。在命令行中输入以下内容: from flask import Flask app = Flask(__name_…

    python 2023年5月14日
    00
  • Python2.x中str与unicode相关问题的解决方法

    Python2.x中str与unicode相关问题主要涉及到字符编码、字符串类型转换以及文件读写等方面,下面我将为您提供完整攻略。 字符编码问题 在Python2.x中,str类型是以字节为单位的,而unicode类型是以字符为单位的,因此在进行字符串操作时需要注意字符编码的问题。 转换编码 使用decode和encode方法可以实现字符串之间的转换,如下所…

    python 2023年5月20日
    00
  • Linux下远程连接Jupyter+pyspark部署教程

    下面是“Linux下远程连接Jupyter+pyspark部署教程”的完整攻略: 1. 安装Java环境 在Linux系统上进行Jupyter和pyspark的部署,需要先安装Java环境。可以使用以下命令进行安装: sudo apt-get update sudo apt-get install default-jdk 2. 安装Python环境和Jupy…

    python 2023年6月3日
    00
  • 跟老齐学Python之大话题小函数(1)

    “跟老齐学Python之大话题小函数(1)”是一篇介绍Python函数的教程,主要包括函数定义、传递参数、返回值、作用域等内容。以下是教程的完整攻略: 函数定义 在Python中,使用def关键字定义一个函数,如下所示: def function_name(parameters): function_body 其中,function_name是函数的名称,p…

    python 2023年5月30日
    00
  • 关于Python3的import问题(pycharm可以运行命令行import错误)

    当在Python3中使用import语句导入模块时,有时会遇到import错误,即使在PyCharm中可以运行import命令行。以下是解决Python3中import错误的完整攻略: 1. 检查模块名称 当使用import语句导入模块时,应该确保使用的模块名称是正确的。使用了错误的模块名称,则Python3会认为正在尝试导入一个不存在的模块。可以使用以下代…

    python 2023年5月13日
    00
  • python爬虫爬取bilibili网页基本内容

    下面是关于“Python爬虫爬取B站网页基本内容”的攻略: 1. 确定爬虫目标 为了爬取Bilibili的网页数据,我们需要确定需要爬取的内容。在这个过程中,可以参考B站网页的HTML结构,以及Web开发中HTML标签和CSS样式的概念,找到我们需要的信息。 2. 确定爬取工具 爬取Bilibili网页数据可以使用Python中的requests和Beaut…

    python 2023年5月14日
    00
  • 分析Python编程时利用wxPython来支持多线程的方法

    我为您详细讲解一下利用wxPython来支持多线程的方法。 支持多线程的方法 在Python编程中,我们可以使用wxPython模块来支持多线程。具体实现方法如下: 步骤一:导入wxPython模块 在Python编程中,我们需要先导入wxPython模块,可使用以下代码实现导入: import wx 步骤二:创建多线程 接下来,我们需要创建一个多线程并进行…

    python 2023年5月19日
    00
  • Python+Pygame实现简单的射击小游戏

    标题:Python+Pygame实现简单的射击小游戏攻略 介绍:本攻略将详细介绍如何使用Python语言以及Pygame库实现简单的射击小游戏。主要分为以下几个步骤: 环境准备 游戏框架搭建 游戏角色设计 游戏逻辑实现 游戏运行与测试 一、环境准备 为了开发这个小游戏,需要先安装Python和Pygame库。安装Python的方法因操作系统而异,可以在官方网…

    python 2023年6月3日
    00
合作推广
合作推广
分享本页
返回顶部