遗传算法python版

下面是关于“遗传算法Python版”的详细讲解。

1. 遗传算法的基本原理

遗传算法是一种基于自然选择和遗传学原理的优化算法,它通过模拟生物进化过程来寻找最优解。遗传算法的基本流程如下:

  1. 初始化种群:随机生成一组初始解作为种群。
  2. 选择:根据适应度函数选择一部分优秀的个体作为父代。
  3. 交叉:将父代个进行交叉操作,生成新的子代个体。
  4. 变异:对子代个体进行变异操作,引入新的基因。
  5. 评估:计算每个个体的适应度值。
  6. 选择:根据应度函数选择一部分优秀的个体为下一代种群。
  7. 终止条件:达到预设的终止条件,如迭代次数、适应度值等。

2. 遗传算法的Python实现

以下是遗传算法的Python实现示例:

import random

# 适应度函数
def fitness(solution):
    return sum(solution)

# 初始化种群
def init_population(population_size, solution_size):
    population = []
    for i in range(population_size):
        solution = [random.randint(0, 1) for j in range(solution_size)]
        population.append(solution)
    return population

# 选择
def selection(population, fitness_func, num_parents):
    fitness_values = [fitness_func(solution) for solution in population]
    parents = []
    for i in range(num_parents):
        max_fitness_index = fitness_values.index(max(fitness_values))
        parents.append(population[max_fitness_index])
        fitness_values[max_fitness_index] = -1
    return parents

# 交叉
def crossover(parents, offspring_size):
    offspring = []
    for i in range(offspring_size):
        parent1_index = i % len(parents)
        parent2_index = (i+1) % len(parents)
        offspring.append(parents[parent1_index][:len(parents[parent1_index])//2] + parents[parent2_index][len(parents[parent2_index])//2:])
    return offspring

# 变异
def mutation(offspring_crossover):
    for i in range(len(offspring_crossover)):
        random_index = random.randint(0, len(offspring_crossover[i])-1)
        if offspring_crossover[i][random_index] == 0:
            offspring_crossover[i][random_index] = 1
        else:
            offspring_crossover[i][random_index] = 0
    return offspring_crossover

# 遗传算法
def genetic_algorithm(population_size, solution_size, num_parents, num_generations):
    population = init_population(population_size, solution_size)
    for i in range(num_generations):
        parents = selection(population, fitness, num_parents)
        offspring_crossover = crossover(parents, population_size - num_parents)
        offspring_mutation = mutation(offspring_crossover)
        population = parents + offspring_mutation
    fitness_values = [fitness(solution) for solution in population]
    max_fitness_index = fitness_values.index(max(fitness_values))
    return population[max_fitness_index]

在这个示例中,我们定义了一个genetic_algorithm()函数,它接收四个参数:种群大小population_size、解的大小solution_size、父代个数num_parents和迭代次数num_generations。我们首先使用init_population()函数初始化种群,然后进行迭代。在每次迭代中,我们使用selection()函数选择一部分优秀的个体作为父代,然后使用crossover()函数进行交叉操作,生成新的子代个体。接着,我们使用mutation()函数对子代个体进行变异操作,引入新的基因。最后,我们将父代和子代合并成新的种群,并计算每个个体的适应度值。在所有迭代中,我们选择适应度值最大的个体作为最终解。

以下是使用genetic_algorithm()函数求解最大值问题的示例:

solution_size = 10
population_size = 100
num_parents = 20
num_generations = 100

solution = genetic_algorithm(population_size, solution_size, num_parents, num_generations)
print(solution)

在这个示例中,我们使用genetic_algorithm()函数求解一个大小为10的二进数的最大值问题。我们设置种群大小为100,父代个数为20,迭代次数为100。最后,我们输出求解得到的最优解。

输出结果为:

[1, 1, 1, 1, 1, 1, 1, 1 1, 1]

以下是使用遗传算法解决TSP问题的Python示例:

import random
import numpy as np
import matplotlib.pyplot as plt

# 读取城市坐
def read_cities(filename):
    cities = []
    with open(filename, 'r') as f:
        for line in f:
            city = line.strip().split(' ')
            cities.append((float(city[1]), float(city[2])))
    return cities

# 计算距离矩阵
def distance_matrix(cities):
    n = len(cities)
    dist_matrix = np.zeros((n, n))
    for i in range(n):
        for j in range(n):
            if i != j:
 dist_matrix[i][j] = np.sqrt((cities[i][0]-cities[j][0])**2 + (cities[i][1]-cities[j][1])**2)
    return dist_matrix

# 计算路径长度
def path_length(path, dist):
    length = 0
    for i in range(len(path)-1):
        length += dist_matrix[path[i]][path[i+1]]
    length += dist_matrix[path[-1]][path[0]]
    return length

# 初始化种群
def init_population(population_size, n_cities):
    population = []
    for i in range(population_size):
        path = list(range(n_cities))
        random.shuffle(path)
        population.append(path)
    return population

# 选择
def selection(population, fitness_func, num_parents):
    fitness_values = [fitness_func(solution) for solution in population]
    parents = []
    for i in range(num_parents):
        max_fitness_index = fitness_values.index(max(fitness_values))
        parents.append(population[max_fitness_index])
        fitness_values[max_fitness_index] = -1
    return parents

# 交叉
def crossover(parents, offspring_size):
    offspring = []
    for i in range(offspring_size):
        parent1_index = i % len(parents)
        parent2_index = (i+1) % len(parents)
        offspring.append(parents[parent1_index][:len(parents[parent1_index])//2] + [x for x in parents[parent2_index] if x not in parents[parent1_index][:len(parents[parent1_index])//2]])
    return offspring

# 变异
def mutation(offspring_crossover):
    for i in range(len(offspring_crossover)):
        random_index1 = random.randint(0, len(offspring_crossover[i])-1)
        random_index2 = random.randint(0, len(offspring_crossover[i])-1)
        offspring_crossover[i][random_index1], offspring_crossover[i][random_index2] = offspring_crossover[i][random_index2], offspring_crossover[i][random_index1]
    return offspring_crossover

# 遗传算法
def genetic_algorithm(population_size, num_parents, num_generations, dist_matrix):
    n_cities = len(dist_matrix)
    population = init_population(population_size, n_cities)
    fitness_values = [1/path_length(solution, dist_matrix) for solution in population]
    best_fitness_values = []
    for i in range(num_generations):
        parents = selection(population, lambda x: 1/path_length(x, dist_matrix), num_parents)
        offspring_crossover = crossover(parents, population_size - num_parents)
        offspring_mutation = mutation(offspring_crossover)
        population = parents + offspring_mutation
        fitness_values = [1/path_length(solution, dist_matrix) for solution in population]
        best_fitness_values.append(max(fitness_values))
    best_solution_index = fitness_values.index(max(fitness_values))
    best_solution = population[best_solution_index]
    return best_solution, best_fitness_values

# 绘制结果
def plot_result(cities, solution):
    x = [city[0] for city in cities]
    y = [city[1] for city in cities]
    plt.plot(x, y, 'o')
    for i in range(len(solution)-1):
        plt.plot([cities[solution[i]][0], cities[solution[i+1]][0]], [cities[solution[i]][1], cities[solution[i+1]][1]], 'k-')
    plt.plot([cities[solution[-1]][0], cities[solution[0]][0]], [cities[solution[-1]][1], cities[solution[0]][1]], 'k-')
    plt.show()

# 主函数
if __name__ == '__main__':
    cities = read_cities('cities.txt')
    dist_matrix = distance_matrix(cities)
    best_solution, best_fitness_values = genetic_algorithm(100, 20, 100, dist_matrix)
    print('Best solution:', best_solution)
    print('Best fitness value:', 1/path_length(best_solution, dist_matrix))
    plot_result(cities, best_solution)

在这个示例中,我们使用遗传算法解决TSP问题。我们首先使用read_cities()函数读取城市坐标,然后使用distance_matrix()函数算距离矩阵。接着,我们定义了一个genetic_algorithm()函数,它接收四个参数:种群大小population_size、父代个数num_parents、迭代次数num_generations和距离矩阵dist_matrix。我们使用init_population()函数初始化种群,然后进行迭代。在每次迭代中,我们使用selection()函数选择一部分优秀的个作为父代,然后使用crossover()函数进行交叉操作,生成新的子代个体。接着,我们使用mutation()函数对子代个体进行变异操作,引入新的基因。最后,我们计算每个个体的适应度值,并选择适应度值最大的个体作为最终解。最后,我们使用plot_result()函数绘制结果。

3. 总结

遗传算法是一种基于自然选择和遗传学原理的优化算法,它通过模拟生物进化过程来寻找最优解。在Python中,我们可以使用随机数生成、列表操作等基本语言特性来实现遗传算法。遗传算法的应用非常广泛,可以用于优化、机器学习、人工智能等领域。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:遗传算法python版 - Python技术站

(0)
上一篇 2023年5月13日
下一篇 2023年5月13日

相关文章

  • 用python删除文件夹中的重复图片(图片去重)

    下面是详细讲解用Python删除文件夹中的重复图片(图片去重)的完整攻略。 问题描述 在某些应用场景中,我们可能需要对一些文件夹中的图片进行去重操作,即删除那些重复的图片,仅保留一份。这样可以减少存储空间的占用,并且更便于后续的处理。 解决方案 这里我们可以使用Python来实现简便高效的图片去重操作。主要思路是对每个图片计算一个特征值,然后根据特征值来进行…

    python 2023年5月19日
    00
  • pip报错“ValueError: invalid literal for int() with base 10: ‘2.3’”怎么处理?

    当使用pip安装Python包时,可能会遇到“ValueError: invalid literal for int() with base 10: ‘2.3’”错误。这个错误通常是由以下原因之一引起的: 版本号格式不正确:如果版本号格式不正确,则可能会出现此错误。在这种情况下,需要更改版本号格式。 包依赖关系不正确:如果包依赖关系不正确,则可能会出现此错误…

    python 2023年5月4日
    00
  • python实现简单学生信息管理系统

    Python实现简单学生信息管理系统 概述 本文旨在讲解如何使用Python实现简单的学生信息管理系统。通过本文的学习,你将会了解如何使用Python实现一个基本的CRUD(Create、Read、Update、Delete)操作,并通过文件存储信息,实现信息的持久化。 实现步骤 1. 确定需求 我们的学生信息管理系统需要实现以下功能: 添加学生信息 查询学…

    python 2023年5月30日
    00
  • 使用Python中PDB模块中的命令来调试Python代码的教程

    使用Python中PDB模块(Python Debugger)来调试Python程序,可以让程序出现异常时更加方便地定位错误。下面是使用PDB模块调试代码的完整攻略: 第一步:引入PDB模块 在需要调试的Python文件的头部添加以下代码引入PDB模块: import pdb 第二步:设置断点 在需要调试的代码行前添加以下代码设置断点: pdb.set_tr…

    python 2023年6月3日
    00
  • python二叉树常用算法总结

    下面是关于“Python二叉树常用算法总结”的完整攻略。 1. 二叉树简介 二叉树是一种树形结构,它的每个节点最多有两个子节点。二叉的节点包含一个值和两个指针分别指向左子树和右子树。二叉树的遍历方式包括前序遍历、中序遍历和后序遍历。 2. Python实现二叉树 在Python中,我们可以使用 Node 类来表示二叉树的节点,使用 BinaryTree 类来…

    python 2023年5月13日
    00
  • Python中bytes和str的区别与联系详解

    Python中bytes和str的区别与联系详解 在Python中,bytes和str是两种常用的数据类型,它们看似很相似,但实际上存在着很大的差异。本文将详细讲解bytes和str的区别与联系,并且提供示例说明。 bytes与str的区别 1. 数据类型 bytes是Python中的一种二进制数据类型,表示字节序列,是不可变的序列。而str是表示Unico…

    python 2023年5月13日
    00
  • Python实现对excel文件列表值进行统计的方法

    请您耐心阅读以下内容。 Python实现对Excel文件列表值进行统计的方法 在Python中实现对Excel文件列表值的统计,可以使用pandas库中的read_excel()方法读取Excel文件,然后借助pandas的一些处理函数,实现对Excel值的筛选、过滤及统计。 以下是实现方法的详细步骤: 1. 准备Excel文件 首先我们需要准备一个包含数据…

    python 2023年5月13日
    00
  • python 画二维、三维点之间的线段实现方法

    下面是使用 Python 画二维、三维点之间的线段实现方法的完整攻略。 二维坐标系中绘制线段 在 Python 中,我们可以使用 matplotlib 库中的 pyplot 模块来绘制二维坐标系中的线段。 绘制单个线段 如果要绘制两个坐标点之间的线段,可以使用 plot() 函数,该函数接受两个数组作为参数,分别表示 x 轴和 y 轴的坐标值。例如: imp…

    python 2023年5月19日
    00
合作推广
合作推广
分享本页
返回顶部