下面是关于“遗传算法Python版”的详细讲解。
1. 遗传算法的基本原理
遗传算法是一种基于自然选择和遗传学原理的优化算法,它通过模拟生物进化过程来寻找最优解。遗传算法的基本流程如下:
- 初始化种群:随机生成一组初始解作为种群。
- 选择:根据适应度函数选择一部分优秀的个体作为父代。
- 交叉:将父代个进行交叉操作,生成新的子代个体。
- 变异:对子代个体进行变异操作,引入新的基因。
- 评估:计算每个个体的适应度值。
- 选择:根据应度函数选择一部分优秀的个体为下一代种群。
- 终止条件:达到预设的终止条件,如迭代次数、适应度值等。
2. 遗传算法的Python实现
以下是遗传算法的Python实现示例:
import random
# 适应度函数
def fitness(solution):
return sum(solution)
# 初始化种群
def init_population(population_size, solution_size):
population = []
for i in range(population_size):
solution = [random.randint(0, 1) for j in range(solution_size)]
population.append(solution)
return population
# 选择
def selection(population, fitness_func, num_parents):
fitness_values = [fitness_func(solution) for solution in population]
parents = []
for i in range(num_parents):
max_fitness_index = fitness_values.index(max(fitness_values))
parents.append(population[max_fitness_index])
fitness_values[max_fitness_index] = -1
return parents
# 交叉
def crossover(parents, offspring_size):
offspring = []
for i in range(offspring_size):
parent1_index = i % len(parents)
parent2_index = (i+1) % len(parents)
offspring.append(parents[parent1_index][:len(parents[parent1_index])//2] + parents[parent2_index][len(parents[parent2_index])//2:])
return offspring
# 变异
def mutation(offspring_crossover):
for i in range(len(offspring_crossover)):
random_index = random.randint(0, len(offspring_crossover[i])-1)
if offspring_crossover[i][random_index] == 0:
offspring_crossover[i][random_index] = 1
else:
offspring_crossover[i][random_index] = 0
return offspring_crossover
# 遗传算法
def genetic_algorithm(population_size, solution_size, num_parents, num_generations):
population = init_population(population_size, solution_size)
for i in range(num_generations):
parents = selection(population, fitness, num_parents)
offspring_crossover = crossover(parents, population_size - num_parents)
offspring_mutation = mutation(offspring_crossover)
population = parents + offspring_mutation
fitness_values = [fitness(solution) for solution in population]
max_fitness_index = fitness_values.index(max(fitness_values))
return population[max_fitness_index]
在这个示例中,我们定义了一个genetic_algorithm()
函数,它接收四个参数:种群大小population_size
、解的大小solution_size
、父代个数num_parents
和迭代次数num_generations
。我们首先使用init_population()
函数初始化种群,然后进行迭代。在每次迭代中,我们使用selection()
函数选择一部分优秀的个体作为父代,然后使用crossover()
函数进行交叉操作,生成新的子代个体。接着,我们使用mutation()
函数对子代个体进行变异操作,引入新的基因。最后,我们将父代和子代合并成新的种群,并计算每个个体的适应度值。在所有迭代中,我们选择适应度值最大的个体作为最终解。
以下是使用genetic_algorithm()
函数求解最大值问题的示例:
solution_size = 10
population_size = 100
num_parents = 20
num_generations = 100
solution = genetic_algorithm(population_size, solution_size, num_parents, num_generations)
print(solution)
在这个示例中,我们使用genetic_algorithm()
函数求解一个大小为10的二进数的最大值问题。我们设置种群大小为100,父代个数为20,迭代次数为100。最后,我们输出求解得到的最优解。
输出结果为:
[1, 1, 1, 1, 1, 1, 1, 1 1, 1]
以下是使用遗传算法解决TSP问题的Python示例:
import random
import numpy as np
import matplotlib.pyplot as plt
# 读取城市坐
def read_cities(filename):
cities = []
with open(filename, 'r') as f:
for line in f:
city = line.strip().split(' ')
cities.append((float(city[1]), float(city[2])))
return cities
# 计算距离矩阵
def distance_matrix(cities):
n = len(cities)
dist_matrix = np.zeros((n, n))
for i in range(n):
for j in range(n):
if i != j:
dist_matrix[i][j] = np.sqrt((cities[i][0]-cities[j][0])**2 + (cities[i][1]-cities[j][1])**2)
return dist_matrix
# 计算路径长度
def path_length(path, dist):
length = 0
for i in range(len(path)-1):
length += dist_matrix[path[i]][path[i+1]]
length += dist_matrix[path[-1]][path[0]]
return length
# 初始化种群
def init_population(population_size, n_cities):
population = []
for i in range(population_size):
path = list(range(n_cities))
random.shuffle(path)
population.append(path)
return population
# 选择
def selection(population, fitness_func, num_parents):
fitness_values = [fitness_func(solution) for solution in population]
parents = []
for i in range(num_parents):
max_fitness_index = fitness_values.index(max(fitness_values))
parents.append(population[max_fitness_index])
fitness_values[max_fitness_index] = -1
return parents
# 交叉
def crossover(parents, offspring_size):
offspring = []
for i in range(offspring_size):
parent1_index = i % len(parents)
parent2_index = (i+1) % len(parents)
offspring.append(parents[parent1_index][:len(parents[parent1_index])//2] + [x for x in parents[parent2_index] if x not in parents[parent1_index][:len(parents[parent1_index])//2]])
return offspring
# 变异
def mutation(offspring_crossover):
for i in range(len(offspring_crossover)):
random_index1 = random.randint(0, len(offspring_crossover[i])-1)
random_index2 = random.randint(0, len(offspring_crossover[i])-1)
offspring_crossover[i][random_index1], offspring_crossover[i][random_index2] = offspring_crossover[i][random_index2], offspring_crossover[i][random_index1]
return offspring_crossover
# 遗传算法
def genetic_algorithm(population_size, num_parents, num_generations, dist_matrix):
n_cities = len(dist_matrix)
population = init_population(population_size, n_cities)
fitness_values = [1/path_length(solution, dist_matrix) for solution in population]
best_fitness_values = []
for i in range(num_generations):
parents = selection(population, lambda x: 1/path_length(x, dist_matrix), num_parents)
offspring_crossover = crossover(parents, population_size - num_parents)
offspring_mutation = mutation(offspring_crossover)
population = parents + offspring_mutation
fitness_values = [1/path_length(solution, dist_matrix) for solution in population]
best_fitness_values.append(max(fitness_values))
best_solution_index = fitness_values.index(max(fitness_values))
best_solution = population[best_solution_index]
return best_solution, best_fitness_values
# 绘制结果
def plot_result(cities, solution):
x = [city[0] for city in cities]
y = [city[1] for city in cities]
plt.plot(x, y, 'o')
for i in range(len(solution)-1):
plt.plot([cities[solution[i]][0], cities[solution[i+1]][0]], [cities[solution[i]][1], cities[solution[i+1]][1]], 'k-')
plt.plot([cities[solution[-1]][0], cities[solution[0]][0]], [cities[solution[-1]][1], cities[solution[0]][1]], 'k-')
plt.show()
# 主函数
if __name__ == '__main__':
cities = read_cities('cities.txt')
dist_matrix = distance_matrix(cities)
best_solution, best_fitness_values = genetic_algorithm(100, 20, 100, dist_matrix)
print('Best solution:', best_solution)
print('Best fitness value:', 1/path_length(best_solution, dist_matrix))
plot_result(cities, best_solution)
在这个示例中,我们使用遗传算法解决TSP问题。我们首先使用read_cities()
函数读取城市坐标,然后使用distance_matrix()
函数算距离矩阵。接着,我们定义了一个genetic_algorithm()
函数,它接收四个参数:种群大小population_size
、父代个数num_parents
、迭代次数num_generations
和距离矩阵dist_matrix
。我们使用init_population()
函数初始化种群,然后进行迭代。在每次迭代中,我们使用selection()
函数选择一部分优秀的个作为父代,然后使用crossover()
函数进行交叉操作,生成新的子代个体。接着,我们使用mutation()
函数对子代个体进行变异操作,引入新的基因。最后,我们计算每个个体的适应度值,并选择适应度值最大的个体作为最终解。最后,我们使用plot_result()
函数绘制结果。
3. 总结
遗传算法是一种基于自然选择和遗传学原理的优化算法,它通过模拟生物进化过程来寻找最优解。在Python中,我们可以使用随机数生成、列表操作等基本语言特性来实现遗传算法。遗传算法的应用非常广泛,可以用于优化、机器学习、人工智能等领域。
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:遗传算法python版 - Python技术站