语言模型

RNN是在自然语言处理领域中最先被用起来的,比如,RNN可以为语言模型来建模。那么,什么是语言模型呢?

我们可以和电脑玩一个游戏,我们写出一个句子前面的一些词,然后,让电脑帮我们写下接下来的一个词。比如下面这句:

我昨天上学迟到了,老师批评了____。

我们给电脑展示了这句话前面这些词,然后,让电脑写下接下来的一个词。在这个例子中,接下来的这个词最有可能是『我』,而不太可能是『小明』,甚至是『吃饭』。

语言模型就是这样的东西:给定一个一句话前面的部分,预测接下来最有可能的一个词是什么。

语言模型是对一种语言的特征进行建模,它有很多很多用处。比如在语音转文本(STT)的应用中,声学模型输出的结果,往往是若干个可能的候选词,这时候就需要语言模型来从这些候选词中选择一个最可能的。当然,它同样也可以用在图像到文本的识别中(OCR)。

使用RNN之前,语言模型主要是采用N-Gram。N可以是一个自然数,比如2或者3。它的含义是,假设一个词出现的概率只与前面N个词相关。我们以2-Gram为例。首先,对前面的一句话进行切词:

我 昨天 上学 迟到 了 ,老师 批评 了 ____。

如果用2-Gram进行建模,那么电脑在预测的时候,只会看到前面的『了』,然后,电脑会在语料库中,搜索『了』后面最可能的一个词。不管最后电脑选的是不是『我』,我们都知道这个模型是不靠谱的,因为『了』前面说了那么一大堆实际上是没有用到的。如果是3-Gram模型呢,会搜索『批评了』后面最可能的词,感觉上比2-Gram靠谱了不少,但还是远远不够的。因为这句话最关键的信息『我』,远在9个词之前!

现在读者可能会想,可以提升继续提升N的值呀,比如4-Gram、5-Gram.......。实际上,这个想法是没有实用性的。因为我们想处理任意长度的句子,N设为多少都不合适;另外,模型的大小和N的关系是指数级的,4-Gram模型就会占用海量的存储空间。

所以,该轮到RNN出场了,RNN理论上可以往前看(往后看)任意多个词。

循环神经网络是啥

循环神经网络种类繁多,我们先从最简单的基本循环神经网络开始吧。

基本循环神经网络

下图是一个简单的循环神经网络如,它由输入层、一个隐藏层和一个输出层组成:

深度学习(6) - 循环神经网络

纳尼?!相信第一次看到这个玩意的读者内心和我一样是崩溃的。因为循环神经网络实在是太难画出来了,网上所有大神们都不得不用了这种抽象艺术手法。不过,静下心来仔细看看的话,其实也是很好理解的。如果把上面有W的那个带箭头的圈去掉,它就变成了最普通的全连接神经网络。x是一个向量,它表示输入层的值(这里面没有画出来表示神经元节点的圆圈);s是一个向量,它表示隐藏层的值(这里隐藏层面画了一个节点,你也可以想象这一层其实是多个节点,节点数与向量s的维度相同);U是输入层到隐藏层的权重矩阵(读者可以回到第三篇文章零基础入门深度学习(3) - 神经网络和反向传播算法,看看我们是怎样用矩阵来表示全连接神经网络的计算的);o也是一个向量,它表示输出层的值;V是隐藏层到输出层的权重矩阵。那么,现在我们来看看W是什么。循环神经网络隐藏层的值s不仅仅取决于当前这次的输入x,还取决于上一次隐藏层的值s。权重矩阵 W就是隐藏层上一次的值作为这一次的输入的权重。

如果我们把上面的图展开,循环神经网络也可以画成下面这个样子:

深度学习(6) - 循环神经网络

现在看上去就比较清楚了,这个网络在t时刻接收到输入之后,隐藏层的值是,输出值是。关键一点是,的值不仅仅取决于,还取决于。我们可以用下面的公式来表示循环神经网络的计算方法:

式式

式1输出层的计算公式,输出层是一个全连接层,也就是它的每个节点都和隐藏层的每个节点相连。V是输出层的权重矩阵,g是**函数。式2是隐藏层的计算公式,它是循环层。U是输入x的权重矩阵,W是上一次的值作为这一次的输入的权重矩阵,f是**函数

从上面的公式我们可以看出,循环层全连接层的区别就是循环层多了一个权重矩阵 W。

如果反复把式2带入到式1,我们将得到:

从上面可以看出,循环神经网络的输出值,是受前面历次输入值、...影响的,这就是为什么循环神经网络可以往前看任意多个输入值的原因。

双向循环神经网络

对于语言模型来说,很多时候光看前面的词是不够的,比如下面这句话:

我的手机坏了,我打算____一部新手机。

可以想象,如果我们只看横线前面的词,手机坏了,那么我是打算修一修?换一部新的?还是大哭一场?这些都是无法确定的。但如果我们也看到了横线后面的词是『一部新手机』,那么,横线上的词填『买』的概率就大得多了。

在上一小节中的基本循环神经网络是无法对此进行建模的,因此,我们需要双向循环神经网络,如下图所示:

深度学习(6) - 循环神经网络

当遇到这种从未来穿越回来的场景时,难免处于懵逼的状态。不过我们还是可以用屡试不爽的老办法:先分析一个特殊场景,然后再总结一般规律。我们先考虑上图中,的计算。

从上图可以看出,双向卷积神经网络的隐藏层要保存两个值,一个A参与正向计算,另一个值A'参与反向计算。最终的输出值取决于。其计算方法为:

则分别计算:

现在,我们已经可以看出一般的规律:正向计算时,隐藏层的值有关;反向计算时,隐藏层的值有关;最终的输出取决于正向和反向计算的加和。现在,我们仿照式1式2,写出双向循环神经网络的计算方法:

从上面三个公式我们可以看到,正向计算和反向计算不共享权重,也就是说U和U'、W和W'、V和V'都是不同的权重矩阵

深度循环神经网络

前面我们介绍的循环神经网络只有一个隐藏层,我们当然也可以堆叠两个以上的隐藏层,这样就得到了深度循环神经网络。如下图所示:

深度学习(6) - 循环神经网络

我们把第i个隐藏层的值表示为,则深度循环神经网络的计算方式可以表示为:

循环神经网络的训练

循环神经网络的训练算法:BPTT

BPTT算法是针对循环层的训练算法,它的基本原理和BP算法是一样的,也包含同样的三个步骤:

  1. 前向计算每个神经元的输出值;
  2. 反向计算每个神经元的误差项值,它是误差函数E对神经元j的加权输入的偏导数;
  3. 计算每个权重的梯度。

最后再用随机梯度下降算法更新权重。

循环层如下图所示:

深度学习(6) - 循环神经网络

前向计算

使用前面的式2对循环层进行前向计算:

注意,上面的都是向量,用黑体字母表示;而U、V是矩阵,用大写字母表示。向量的下标表示时刻,例如,表示在t时刻向量s的值。

我们假设输入向量x的维度是m,输出向量s的维度是n,则矩阵U的维度是,矩阵W的维度是。下面是上式展开成矩阵的样子,看起来更直观一些:

在这里我们用手写体字母表示向量的一个元素,它的下标表示它是这个向量的第几个元素,它的上标表示第几个时刻。例如,表示向量s的第j个元素在t时刻的值。表示输入层第i个神经元到循环层第j个神经元的权重。表示循环层第t-1时刻的第i个神经元到循环层第t个时刻的第j个神经元的权重。

误差项的计算

BTPP算法将第l层t时刻的误差项值沿两个方向传播,一个方向是其传递到上一层网络,得到,这部分只和权重矩阵U有关;另一个是方向是将其沿时间线传递到初始时刻,得到,这部分只和权重矩阵W有关。

我们用向量表示神经元在t时刻的加权输入,因为:

因此:

我们用a表示列向量,用表示行向量。上式的第一项是向量函数对向量求导,其结果为Jacobian矩阵:

同理,上式第二项也是一个Jacobian矩阵:

其中,diag[a]表示根据向量a创建一个对角矩阵,即

最后,将两项合在一起,可得:

上式描述了将沿时间往前传递一个时刻的规律,有了这个规律,我们就可以求得任意时刻k的误差项

式3就是将误差项沿时间反向传播的算法。

循环层误差项反向传递到上一层网络,与普通的全连接层是完全一样的,这在前面的文章零基础入门深度学习(3) - 神经网络和反向传播算法中已经详细讲过了,在此仅简要描述一下。

循环层加权输入与上一层的加权输入关系如下:

上式中是第l层神经元的加权输入(假设第l层是循环层);是第l-1层神经元的加权输入是第l-1层神经元的输出;是第l-1层的**函数

所以,

式4就是将误差项传递到上一层算法。

权重梯度的计算

现在,我们终于来到了BPTT算法的最后一步:计算每个权重的梯度。

首先,我们计算误差函数E对权重矩阵W的梯度

深度学习(6) - 循环神经网络

上图展示了我们到目前为止,在前两步中已经计算得到的量,包括每个时刻t 循环层的输出值,以及误差项

回忆一下我们在文章零基础入门深度学习(3) - 神经网络和反向传播算法介绍的全连接网络的权重梯度计算算法:只要知道了任意一个时刻的误差项,以及上一个时刻循环层的输出值,就可以按照下面的公式求出权重矩阵在t时刻的梯度

式5中,表示t时刻误差项向量的第i个分量;表示t-1时刻循环层第i个神经元的输出值。

我们下面可以简单推导一下式5

我们知道:

因为对W求导与无关,我们不再考虑。现在,我们考虑对权重项求导。通过观察上式我们可以看到只与有关,所以:

按照上面的规律就可以生成式5里面的矩阵。

我们已经求得了权重矩阵W在t时刻的梯度,最终的梯度是各个时刻的梯度之和