Keras构建神经网络踩坑(解决model.predict预测值全为0.0的问题)

下面是关于“Keras构建神经网络踩坑(解决model.predict预测值全为0.0的问题)”的完整攻略。

Keras构建神经网络踩坑(解决model.predict预测值全为0.0的问题)

在使用Keras构建神经网络时,有时候会遇到model.predict预测值全为0.0的问题。下面是一些示例说明。

示例1:解决model.predict预测值全为0.0的问题

from keras.models import Sequential
from keras.layers import Dense
import numpy as np

# 加载数据
data = np.loadtxt("data.csv", delimiter=",", skiprows=1)

# 分割数据
X = data[:,0:2]
y = data[:,2]

# 创建模型
model = Sequential()
model.add(Dense(12, input_dim=2, activation='relu'))
model.add(Dense(1, activation='sigmoid'))

# 编译模型
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

# 训练模型
model.fit(X, y, epochs=100, batch_size=10)

# 预测分类
prediction = model.predict(np.array([[0.1, 0.2]]))
print(prediction)

在这个示例中,我们首先使用np.loadtxt()方法加载数据。我们使用[:,0:2]和[:,2]来分割数据。我们使用Sequential()类创建一个新的模型。我们使用Dense()类添加层到模型中。我们使用compile()方法编译模型。我们使用fit()方法训练模型。我们使用predict()方法预测分类。但是,我们发现预测值全为0.0。这是因为我们没有对输入数据进行归一化处理。我们可以使用sklearn.preprocessing中的MinMaxScaler类对数据进行归一化处理。

from keras.models import Sequential
from keras.layers import Dense
from sklearn.preprocessing import MinMaxScaler
import numpy as np

# 加载数据
data = np.loadtxt("data.csv", delimiter=",", skiprows=1)

# 分割数据
X = data[:,0:2]
y = data[:,2]

# 归一化处理
scaler = MinMaxScaler()
X = scaler.fit_transform(X)

# 创建模型
model = Sequential()
model.add(Dense(12, input_dim=2, activation='relu'))
model.add(Dense(1, activation='sigmoid'))

# 编译模型
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

# 训练模型
model.fit(X, y, epochs=100, batch_size=10)

# 预测分类
prediction = model.predict(scaler.transform(np.array([[0.1, 0.2]])))
print(prediction)

在这个示例中,我们首先使用np.loadtxt()方法加载数据。我们使用[:,0:2]和[:,2]来分割数据。我们使用MinMaxScaler类对数据进行归一化处理。我们使用Sequential()类创建一个新的模型。我们使用Dense()类添加层到模型中。我们使用compile()方法编译模型。我们使用fit()方法训练模型。我们使用predict()方法预测分类。我们使用MinMaxScaler类对输入数据进行归一化处理。

总结

在使用Keras构建神经网络时,有时候会遇到model.predict预测值全为0.0的问题。这是因为我们没有对输入数据进行归一化处理。我们可以使用sklearn.preprocessing中的MinMaxScaler类对数据进行归一化处理。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Keras构建神经网络踩坑(解决model.predict预测值全为0.0的问题) - Python技术站

(0)
上一篇 2023年5月15日
下一篇 2023年5月15日

相关文章

  • Keras学习-1

    本文基于http://keras-cn.readthedocs.io/en/latest/for_beginners/concepts/提及的知识总结,感谢作者做出的贡献,如有侵权将立即删除 符号计算 Keras的底层库使用Theano或TensorFlow,这两个库也称为Keras的后端。无论是Theano还是TensorFlow,都是一个“符号式”的库。…

    2023年4月8日
    00
  • [深度学习] keras的EarlyStopping使用与技巧

    Early Stopping是什么 具体EarlyStopping的使用请参考官方文档和源代码。EarlyStopping是Callbacks的一种,callbacks用于指定在每个epoch开始和结束的时候进行哪种特定操作。Callbacks中有一些设置好的接口,可以直接使用,如’acc’, ‘val_acc’, ’loss’ 和 ’val_loss’等等…

    2023年4月8日
    00
  • Keras: input_shape函数

    keras.backend.int_shape(x) 返回张量或变量的尺寸,作为 int 或 None 项的元组。 参数 x: 张量或变量。 返回 整数元组(或 None 项)。 例子 >>> from keras import backend as K >>> inputs = K.placeholder(shape=(…

    Keras 2023年4月5日
    00
  • keras各种优化方法总结 SGDmomentumnesterov

      http://blog.csdn.net/luo123n/article/details/48239963   前言 这里讨论的优化问题指的是,给定目标函数f(x),我们需要找到一组参数x,使得f(x)的值最小。 本文以下内容假设读者已经了解机器学习基本知识,和梯度下降的原理。 SGD SGD指stochastic gradient descent,即随…

    2023年4月7日
    00
  • YOLO v4常见的非线性激活函数详解

    下面是关于“YOLO v4常见的非线性激活函数详解”的完整攻略。 YOLO v4常见的非线性激活函数详解 在YOLO v4目标检测算法中,常用的非线性激活函数有以下几种: 1. Mish Mish是一种新的非线性激活函数,它在YOLO v4中被广泛使用。Mish函数的公式如下: $$f(x) = x \cdot tanh(ln(1 + e^x))$$ 以下是…

    Keras 2023年5月15日
    00
  • 在jupyter平台上使用keras和tensorflow之安装篇

    使用平台为 win10,预先安装anaconda。使用包管理工具 conda和pip 0. 设置镜像源为中科大源 conda config –add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/main/ conda config –add channels https://mirrors.ust…

    Keras 2023年4月8日
    00
  • CNN眼中的世界:利用Keras解释CNN的滤波器

     转载自:https://keras-cn.readthedocs.io/en/latest/legacy/blog/cnn_see_world/ 文章信息 本文地址:http://blog.keras.io/how-convolutional-neural-networks-see-the-world.html 本文作者:Francois Chollet …

    Keras 2023年4月7日
    00
  • keras使用pydot画图的问题

    from keras.utils import plot_model plot_model(model, to_file=”model.png”, show_shapes=True, show_layer_names=True) 上面代码执行处做,Assertion Error 解决方案: This may help for someone who is l…

    Keras 2023年4月5日
    00
合作推广
合作推广
分享本页
返回顶部