PyTorch-GPU加速实例

在PyTorch中,我们可以使用GPU来加速模型的训练和推理。在本文中,我们将详细讲解如何使用GPU来加速模型的训练和推理。我们将使用两个示例来说明如何完成这些步骤。

示例1:使用GPU加速模型训练

以下是使用GPU加速模型训练的步骤:

import torch
import torch.nn as nn
import torch.optim as optim

# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)

# 定义模型
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.fc1 = nn.Linear(784, 128)
        self.fc2 = nn.Linear(128, 10)

    def forward(self, x):
        x = x.view(-1, 784)
        x = torch.relu(self.fc1(x))
        x = self.fc2(x)
        return x

model = Net().to(device)

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.1)

# 加载数据
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)

# 训练模型
for epoch in range(10):
    running_loss = 0.0
    for i, data in enumerate(train_loader, 0):
        inputs, labels = data
        inputs, labels = inputs.to(device), labels.to(device)
        optimizer.zero_grad()
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()

    print(f'Epoch {epoch + 1}, Loss: {running_loss / len(train_dataset)}')

在上述代码中,我们首先检查GPU是否可用,并将模型移动到GPU上。然后,我们定义了一个简单的全连接神经网络Net,它含有一个输入层、一个隐藏层和一个输出层。在训练模型的过程中,我们使用inputs.to(device)labels.to(device)将数据移动到GPU上。在训练模型的过程中,我们使用torch.utils.data.DataLoader加载数据,并使用enumerate()函数遍历数据。在每个批次中,我们使用optimizer.zero_grad()清除梯度,使用model(inputs)计算输出,使用criterion(outputs, labels)计算损失,使用loss.backward()计算梯度,使用optimizer.step()更新权重。

示例2:使用GPU加速模型推理

以下是使用GPU加速模型推理的步骤:

import torch
import torch.nn as nn

# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)

# 定义模型
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.fc1 = nn.Linear(784, 128)
        self.fc2 = nn.Linear(128, 10)

    def forward(self, x):
        x = x.view(-1, 784)
        x = torch.relu(self.fc1(x))
        x = self.fc2(x)
        return x

model = Net().to(device)

# 加载模型权重
model.load_state_dict(torch.load('model.pth'))

# 使用模型进行推理
with torch.no_grad():
    inputs = torch.randn(1, 784).to(device)
    outputs = model(inputs)
    _, predicted = torch.max(outputs.data, 1)
    print(predicted)

在上述代码中,我们首先检查GPU是否可用,并将模型移动到GPU上。然后,我们定义了一个简单的全连接神经网络Net,它含有一个输入层、一个隐藏层和一个输出层。在使用模型进行推理时,我们使用inputs.to(device)将数据移动到GPU上。在使用模型进行推理时,我们使用torch.no_grad()来禁用梯度计算,因为我们不需要计算梯度或更新权重。我们使用torch.max()函数找到输出中的最大值,并使用print()函数打印预测结果。

结论

在本文中,我们详细讲解了如何使用GPU来加速模型的训练和推理。我们使用了两个示例来说明如何完成这些步骤。如果您按照这些步骤操作,您应该能够成功使用GPU来加速模型的训练和推理。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:PyTorch-GPU加速实例 - Python技术站

(0)
上一篇 2023年5月15日
下一篇 2023年5月15日

相关文章

  • 基于anaconda3的Pytorch环境搭建

    安装anaconda3,版本选择新的就行 打开anaconda prompt创建虚拟环境conda create -n pytorch_gpu python=3.9,pytorch_gpu是环境名称,可自行选取,python=3.9是选择的python版本,可自行选择,conda会自动下载选择的python版本 打开cmd按照下图输入查看显卡驱动版本 查看显…

    2023年4月8日
    00
  • pytorch官网上两个例程

    caffe用起来太笨重了,最近转到pytorch,用起来实在不要太方便,上手也非常快,这里贴一下pytorch官网上的两个小例程,掌握一下它的用法:   例程一:利用nn  这个module构建网络,实现一个图像分类的小功能; 链接:http://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.ht…

    PyTorch 2023年4月8日
    00
  • pytorch使用tensorboardX进行loss可视化实例

    PyTorch使用TensorboardX进行Loss可视化实例 在PyTorch中,我们可以使用TensorboardX库将训练过程中的Loss可视化。本文将介绍如何使用TensorboardX库进行Loss可视化,并提供两个示例说明。 1. 安装TensorboardX 要使用TensorboardX库,我们需要先安装它。可以使用以下命令在终端中安装Te…

    PyTorch 2023年5月15日
    00
  • Pytorch如何切换 cpu和gpu的使用详解

    PyTorch如何切换CPU和GPU的使用详解 PyTorch是一种常用的深度学习框架,它支持在CPU和GPU上运行。在本文中,我们将介绍如何在PyTorch中切换CPU和GPU的使用,并提供两个示例说明。 示例1:在CPU上运行PyTorch模型 以下是一个在CPU上运行PyTorch模型的示例代码: import torch # Define model…

    PyTorch 2023年5月16日
    00
  • pytorch安装失败

    使用pip install torch安装失败, 在官网https://pytorch.org/ ,选择合适的版本   之后再安装,      现在清华的镜像好像没了,选择正确的版本下载还是很快的。

    2023年4月8日
    00
  • [Pytorch数据集下载] 下载MNIST数据缓慢的方案

    步骤一 首先访问下面的网站,手工下载数据集。http://yann.lecun.com/exdb/mnist/把四个压缩包下载到任意文件夹,以便之后使用。 步骤二 把自己电脑上已经下载好的数据集的文件路径放到浏览器的窗口。直接输入 file:/// 会自行跳转 步骤三 `command + MNIST` 跳转至mnist.py,把源代码中的resource的…

    2023年4月6日
    00
  • pytorch动态神经网络(拟合)实现

    PyTorch是一个非常流行的深度学习框架,它提供了丰富的工具和库来帮助我们进行深度学习任务。在本文中,我们将介绍如何使用PyTorch实现动态神经网络的拟合,并提供两个示例说明。 动态神经网络的拟合 动态神经网络是一种可以根据输入数据动态构建网络结构的神经网络。在动态神经网络中,网络的结构和参数都是根据输入数据动态生成的,这使得动态神经网络可以适应不同的输…

    PyTorch 2023年5月16日
    00
  • pytorch网络转libtorch常见问题

    一、All inputs of range must be ints, found Tensor in argument 0: 问题参数类型不正确,函数的默认参数是tensor 解决措施函数传入参数不是tensor需要注明类型我的问题是传入参数npoint是一个int类型,没有注明会报错,更改如下:由 def test(npoint): … 更改为 de…

    2023年4月8日
    00
合作推广
合作推广
分享本页
返回顶部