下面是关于“Keras:Unet网络实现多类语义分割方式”的完整攻略。
Unet网络实现多类语义分割方式
Unet网络是一种用于图像分割的深度学习模型。在这个示例中,我们将使用Unet网络来实现多类语义分割方式。
示例1:使用Keras实现Unet网络
我们可以使用Keras来实现Unet网络。以下是一个简单的Unet网络实现示例。
from keras.models import Model
from keras.layers import Input, Conv2D, MaxPooling2D, Dropout, UpSampling2D, concatenate
def unet(input_size=(256, 256, 3), num_classes=2):
inputs = Input(input_size)
# 下采样
conv1 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(inputs)
conv1 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool1)
conv2 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool2)
conv3 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
conv4 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool3)
conv4 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv4)
drop4 = Dropout(0.5)(conv4)
pool4 = MaxPooling2D(pool_size=(2, 2))(drop4)
conv5 = Conv2D(1024, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool4)
conv5 = Conv2D(1024, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv5)
drop5 = Dropout(0.5)(conv5)
# 上采样
up6 = Conv2D(512, 2, activation='relu', padding='same', kernel_initializer='he_normal')(UpSampling2D(size=(2, 2))(drop5))
merge6 = concatenate([drop4, up6], axis=3)
conv6 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge6)
conv6 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv6)
up7 = Conv2D(256, 2, activation='relu', padding='same', kernel_initializer='he_normal')(UpSampling2D(size=(2, 2))(conv6))
merge7 = concatenate([conv3, up7], axis=3)
conv7 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge7)
conv7 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv7)
up8 = Conv2D(128, 2, activation='relu', padding='same', kernel_initializer='he_normal')(UpSampling2D(size=(2, 2))(conv7))
merge8 = concatenate([conv2, up8], axis=3)
conv8 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge8)
conv8 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv8)
up9 = Conv2D(64, 2, activation='relu', padding='same', kernel_initializer='he_normal')(UpSampling2D(size=(2, 2))(conv8))
merge9 = concatenate([conv1, up9], axis=3)
conv9 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge9)
conv9 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv9)
conv9 = Conv2D(num_classes, 1, activation='softmax')(conv9)
model = Model(inputs=inputs, outputs=conv9)
return model
在这个示例中,我们定义了一个Unet网络模型,并使用Keras的Conv2D、MaxPooling2D、Dropout、UpSampling2D和concatenate等函数来构建模型。我们使用softmax作为输出层的激活函数,并将输出层的通道数设置为类别数。
示例2:使用Unet网络进行多类语义分割
我们可以使用上面的Unet网络模型来进行多类语义分割。以下是一个简单的多类语义分割示例。
from keras.optimizers import Adam
from keras.losses import categorical_crossentropy
from keras.metrics import categorical_accuracy
from keras.preprocessing.image import ImageDataGenerator
# 加载数据
train_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
'data/train',
target_size=(256, 256),
batch_size=32,
class_mode='categorical')
val_datagen = ImageDataGenerator(rescale=1./255)
val_generator = val_datagen.flow_from_directory(
'data/val',
target_size=(256, 256),
batch_size=32,
class_mode='categorical')
# 定义模型
model = unet(num_classes=3)
model.compile(optimizer=Adam(lr=1e-4), loss=categorical_crossentropy, metrics=[categorical_accuracy])
# 训练模型
model.fit_generator(
train_generator,
steps_per_epoch=2000,
epochs=50,
validation_data=val_generator,
validation_steps=800)
在这个示例中,我们使用Keras的ImageDataGenerator函数来加载数据,并使用unet函数定义了一个Unet网络模型。我们使用Adam优化器和categorical_crossentropy损失函数来编译模型,并使用categorical_accuracy作为评估指标。然后,我们使用fit_generator函数来训练模型。
总结
Unet网络是一种用于图像分割的深度学习模型。我们可以使用Keras来实现Unet网络,并使用softmax作为输出层的激活函数来进行多类语义分割。我们可以使用ImageDataGenerator函数来加载数据,并使用fit_generator函数来训练模型。
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Keras:Unet网络实现多类语义分割方式 - Python技术站