算的的上是自己搭建的第一个卷积神经网络。网络结构比较简单。

输入为单通道的mnist数据集。它是一张28*28,包含784个特征值的图片

我们第一层输入,使用5*5的卷积核进行卷积,输出32张特征图,然后使用2*2的池化核进行池化 输出14*14的图片

第二层 使用5*5的卷积和进行卷积,输出64张特征图,然后使用2*2的池化核进行池化 输出7*7的图片

第三层为全连接层 我们总结有 7*7*64 个输入,输出1024个节点 ,使用relu作为激活函数,增加一个keep_prob的dropout层

第四层为输出层,我们接收1024个输入,输出长度为10的one-hot向量。使用softmax作为激活函数

使用交叉熵作为损失函数

网络模型代码:

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import sys
import tempfile
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
FLAGS = None
def weight_variable(shape):
    init=tf.truncated_normal(shape=shape,stddev=0.1,mean=1.)
    return tf.Variable(init)
def bias_variable(shape):
    init=tf.constant(0.1,shape=shape)
    return tf.Variable(init)
def conv2d(x,w):
    return tf.nn.conv2d(x,w,[1,1,1,1],padding="SAME")
def max_pool_2x2(x):
    return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding="SAME")

def deepnn(x):
    with tf.name_scope('reshape'):
        x_image=tf.reshape(x,[-1,28,28,1])
    #第一层卷积和池化
    with tf.name_scope('conv1'):
        #输入为1张图片 卷积核为5*5 生成32个特征图
        w_conv1=weight_variable([5,5,1,32])
        b_conv1=bias_variable([32])
        h_conv1=tf.nn.relu(conv2d(x_image,w_conv1)+b_conv1)
    with tf.name_scope('pool1'):
        h_pool1=max_pool_2x2(h_conv1)
    #第二层卷积和池化
    with tf.name_scope("conv2"):
        #输入为32张特征图,卷积核为5*5 输出64张特征图
        w_conv2=weight_variable([5,5,32,64])
        b_conv2=bias_variable([64])
        h_conv2=tf.nn.relu(conv2d(h_pool1,w_conv2)+b_conv2)
    with tf.name_scope("pool2"):
        h_pool2=max_pool_2x2(h_conv2)
    #第一层全连接层,将特征图展开为特征向量,与1024个节点连接
    with tf.name_scope("fc1"):
        w_fc1=weight_variable([7*7*64,1024])
        b_fc1=bias_variable([1024])
        h_pool2_flat=tf.reshape(h_pool2,[-1,7*7*64])
        h_fc1=tf.nn.relu(tf.matmul(h_pool2_flat,w_fc1)+b_fc1)
    #dropout层,训练时随机让某些隐含层节点权重不工作
    with tf.name_scope("dropout1"):
        keep_prob=tf.placeholder(tf.float32)
        h_fc1_drop=tf.nn.dropout(h_fc1,keep_prob)
    #第二个全连接层,连接1024个节点,输出one-hot预测
    with tf.name_scope("fc2"):
        w_fc2=weight_variable([1024,10])
        b_fc2=bias_variable([10])
        h_fc2=tf.matmul(h_fc1_drop,w_fc2)+b_fc2
    return h_fc2,keep_prob

View Code