看得不明不白(我在下一篇中写了如何理解gather的用法)
gather是一个比较复杂的操作,对一个2维tensor,输出的每个元素如下:
out[i][j] = input[index[i][j]][j] # dim=0
out[i][j] = input[i][index[i][j]] # dim=1
二维tensor的gather操作
针对0轴
注意index此时的值
输入
index = t.LongTensor([[0,1,2,3]])
print("index = \n", index) #index是2维
print("index的形状: ",index.shape) #index形状是(1,4)
输出
index =
tensor([[0, 1, 2, 3]])
index的形状: torch.Size([1, 4])
分割线============
针对1轴
注意index此时的值
输入
index = t.LongTensor([[0,1,2,3]]).t() #index是2维
print("index = \n", index) #index形状是(4,1)
print("index的形状: ",index.shape)
输出
index =
tensor([[0],
[1],
[2],
[3]])
index的形状: torch.Size([4, 1])
分割线===========
再来看看几个例子
注意index在以0轴和1轴为标准时的表达式是不一样的。
b.gather()中取0维时,输出的结果是行形式,取1维时,输出的结果是列形式。
- b是一个 $ 3\times4 $ 型的
>>> import torch as t
>>> b = t.arange(0,12).view(3,4)
>>> b
tensor([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
>>> index = t.LongTensor([[0,1,2]])
>>> index
tensor([[0, 1, 2]])
>>> b.gather(0,index) #运行失败了
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
RuntimeError: Expected tensor [1 x 3], src [3 x 4] and index [1 x 3] to have the same size apart from dimension 0 at c:\new-builder_3\win-wheel\pytorch\aten\src\th\generic/THTensorMath.cpp:620
>>> index2 = t.LongTensor([[0,1,2]]).t()
>>> b.gather(1,index2) #运行成功了
tensor([[ 0],
[ 5],
[10]])
>>> index3 = t.LongTensor([[0,1,2,3]]).t()
>>> b.gather(1,index3) #运行失败了
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
RuntimeError: Expected tensor [4 x 1], src [3 x 4] and index [4 x 1] to have the same size apart from dimension 1 at c:\new-builder_3\win-wheel\pytorch\aten\src\th\generic/THTensorMath.cpp:620
- b是一个 $ 6\times6 $ 型的
>>> import torch as t
>>> b = t.arange(0,36).view(6,6)
>>> b
tensor([[ 0, 1, 2, 3, 4, 5],
[ 6, 7, 8, 9, 10, 11],
[12, 13, 14, 15, 16, 17],
[18, 19, 20, 21, 22, 23],
[24, 25, 26, 27, 28, 29],
[30, 31, 32, 33, 34, 35]])
>>> index = t.LongTensor([[0,1,2,3,4,5,6]])
>>> b.gather(0,index) #运行失败了
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
RuntimeError: Expected tensor [1 x 7], src [6 x 6] and index [1 x 7] to have the same size apart from dimension 0 at c:\new-builder_3\win-wheel\pytorch\aten\src\th\generic/THTensorMath.cpp:620
>>> index = t.LongTensor([[0,1,2,3,4,5]])
>>> b.gather(0,index) #运行成功了
tensor([[ 0, 7, 14, 21, 28, 35]])
>>> b.gather(1,index)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
RuntimeError: Expected tensor [1 x 6], src [6 x 6] and index [1 x 6] to have the same size apart from dimension 1 at c:\new-builder_3\win-wheel\pytorch\aten\src\th\generic/THTensorMath.cpp:620
>>> index2 = t.LongTensor([[0,1,2,3,4,5]]).t()
>>> b.gather(1,index2) #运行成功了
tensor([[ 0],
[ 7],
[14],
[21],
[28],
[35]])
>>> index3 = t.LongTensor([[0,1,2,3,4]]).t()
>>> b.gather(1,index3)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
RuntimeError: Expected tensor [5 x 1], src [6 x 6] and index [5 x 1] to have the same size apart from dimension 1 at c:\new-builder_3\win-wheel\pytorch\aten\src\th\generic/THTensorMath.cpp:620
>>> index4 = t.LongTensor([[0,1,2,3,4]])
>>> b.gather(0,index4)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
RuntimeError: Expected tensor [1 x 5], src [6 x 6] and index [1 x 5] to have the same size apart from dimension 0 at c:\new-builder_3\win-wheel\pytorch\aten\src\th\generic/THTensorMath.cpp:620
与gather相对应的逆操作是scatter_,gather把数据从input中按index取出,而scatter_是把取出的数据再放回去。注意scatter_函数是inplace操作。
与gather相对应的逆操作是scatter_,gather把数据从input中按index取出,而scatter_是把取出的数据再放回去。注意scatter_函数是inplace操作。
out = input.gather(dim, index)
-->近似逆操作
out = Tensor()
out.scatter_(dim, index)
根据StackOverflow上的问题修改代码如下:
输入
# 把两个对角线元素放回去到指定位置
c = t.zeros(4,4)
c.scatter_(1, index, b.float())
输出
tensor([[ 0., 0., 0., 3.],
[ 0., 5., 6., 0.],
[ 0., 9., 10., 0.],
[12., 0., 0., 15.]])
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:关于Pytorch的二维tensor的gather和scatter_操作用法分析 - Python技术站