如何用Python将数据集分成训练集和测试集

要将数据集分成训练集和测试集,首先需要导入所需的库,包括pandas和sklearn。其中 pandas 用于处理数据,sklearn 则用于数据分离。以下是 Python 代码及详细解释:

import pandas as pd
from sklearn.model_selection import train_test_split

# 读入数据集
data = pd.read_csv('data.csv')

# 分离数据集
train_data, test_data, train_targets, test_targets = train_test_split(data.drop('output',axis=1), 
                                                                      data['output'], 
                                                                      test_size=0.3, 
                                                                      random_state=42)

首先,使用 Pandas 库的 read_csv() 函数将数据集读入内存。然后,使用 train_test_split() 函数将数据集分离为训练集和测试集。该函数的参数包括:

  • data.drop('output',axis=1):将数据集中的输出(也就是标签)从特征中剔除;
  • data['output']:数据集中的输出(标签);
  • test_size=0.3:测试集占总数据集的比例,这里设置为 30%;
  • random_state=42:随机数种子用于随机分离数据,若不设定,每次运行程序结果会不同。

最后,函数会返回四个对象,分别是训练集数据、测试集数据、训练集标签和测试集标签。分别将其存储在变量 train_datatest_datatrain_targetstest_targets 中。

需要注意,这里默认的分离方式是随机分离。因此,每次运行该函数的结果都会略有不同。如果要保证原数据集的顺序不变,可以将 shuffle 参数设为 False

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:如何用Python将数据集分成训练集和测试集 - Python技术站

(0)
上一篇 2023年3月27日
下一篇 2023年3月27日

相关文章

  • Pandas实现两个表的连接功能的方法详解

    Pandas实现两个表的连接功能的方法详解 Pandas是一个功能强大的数据处理库,它可以实现多种类型的数据处理操作。其中最重要的一种操作就是表格的连接,也称为表格的合并。本文将详细介绍Pandas实现两个表格的连接功能的方法,并提供一些实例说明。 Pandas的两种表格连接方式 Pandas提供了两种主要的表格连接方式:merge和join。两种方式的区别…

    python 2023年5月14日
    00
  • Pandas对数值进行分箱操作的4种方法总结

    当我们面对大量的数据时,常常希望能够将数据进行分组,以方便采取进一步的处理和分析。在数据处理领域中,分箱(binning)操作即将连续的数值数据分组成离散化的多个组,称为“箱子”。这种离散化过程有助于解决各种问题例如缺失值、异常值、噪音等,还可以让数据的分析和处理更加简单快捷。本篇文章将介绍Python数据处理库Pandas中对数据进行分箱的方法,总结了4种…

    python 2023年5月14日
    00
  • 通过Pandas读取大文件的实例

    如果要读取大文件,Pandas 提供了一些方法来确保内存占用最小化。下面是通过 Pandas 读取大文件的完整攻略: 步骤1:导入 Pandas 库 import pandas as pd 步骤2:根据文件类型选择读取方法 常见的文件读取方法有 read_csv、read_excel、read_sql 等,我们需要根据文件类型进行选择。比如,我们要读取一个 …

    python 2023年5月14日
    00
  • Python 用Pandas .query()方法过滤数据

    Pandas是一种开源数据分析工具,它提供了大量数据操作和分析功能,其中Pandas.query()方法是一种方便的数据过滤方法,本文将提供有关Python中如何使用Pandas.query()方法过滤数据的完整攻略,并提供相关实例。 1. Pandas.query()方法概述 Pandas.query()方法可以对DataFrame数据集进行查询,这个函数…

    python-answer 2023年3月27日
    00
  • Pandas Groupby 在组内排序

    请看下面的完整攻略: 1. Pandas Groupby 首先,我们需要先了解Pandas Groupby操作,它是一种按照一定的规则将数据分成几组的操作方式,可以将数据分组进行计算,例如:求和、平均值、中位数等等。 下面是一个示例数据集: import pandas as pd data = { ‘gender’: [‘M’, ‘F’, ‘M’, ‘F’,…

    python-answer 2023年3月27日
    00
  • Python数据分析之 Pandas Dataframe修改和删除及查询操作

    Python数据分析之 Pandas Dataframe修改和删除及查询操作 Pandas是Python的一个强大的数据分析库,它主要用于数据处理、数据分析、数据可视化等方面。其中对于数据处理来说,数据的增删改查是必不可少的内容。本文主要介绍Pandas Dataframe的修改、删除和查询操作,帮助读者更好地掌握Pandas数据分析的技能。 Part 1 …

    python 2023年5月14日
    00
  • 教你如何用python操作摄像头以及对视频流的处理

    教你如何用Python操作摄像头以及对视频流的处理 在这个攻略中,我们会通过Python语言来控制摄像头并进行视频流的处理。主要分为以下几个步骤: 安装相关的库以及工具 调用摄像头并获取视频流 对视频流进行处理 安装相关的库以及工具 首先需要安装几个Python库: OpenCV:用于图像处理和计算机视觉中的各种功能。 NumPy:Python中的一个常用库…

    python 2023年5月14日
    00
  • 如何使用Python自动控制windows桌面

    自动控制Windows桌面可以使用Python的Win32api模块完成,接下来将详细介绍如何使用Python实现Windows桌面的自动控制。 安装pywin32 要使用Python自动控制Windows桌面,需要首先安装pywin32模块。可以使用pip命令进行安装: pip install pywin32 使用pywinauto自动控制Windows桌…

    python 2023年5月14日
    00
合作推广
合作推广
分享本页
返回顶部