如何用Pandas合并 “不匹配的 “时间序列

在Pandas中,可以通过merge()函数合并两个数据框。然而,当合并"不匹配的"时间序列时,需要进行一些额外的步骤。

以下是合并 "不匹配的 "时间序列的详细讲解:

  1. 首先,导入Pandas库并创建两个DataFrame,注意这两个DataFrame具有不同的时间索引:
import pandas as pd

df1 = pd.DataFrame({'date': ['2021-01-01', '2021-01-02', '2021-01-03'],
                   'value1': [1, 2, 3]})
df1['date'] = pd.to_datetime(df1['date'])
df1.set_index('date', inplace=True)

df2 = pd.DataFrame({'date': ['2021-01-01', '2021-01-03', '2021-01-04'],
                   'value2': [4, 5, 6]})
df2['date'] = pd.to_datetime(df2['date'])
df2.set_index('date', inplace=True)
  1. 然后,使用concat()函数(注意不是merge()函数)将两个DataFrame合并,指定join参数为'outer'表示使用外连接。这会导致新的DataFrame具有两个DataFrame的所有行和所有列:
merged = pd.concat([df1, df2], join='outer', axis=1)
print(merged)

输出结果:

            value1  value2
date                     
2021-01-01     1.0     4.0
2021-01-02     2.0     NaN
2021-01-03     3.0     5.0
2021-01-04     NaN     6.0
  1. 最后,使用fillna()函数填充NaN值,使用前一个非NaN值进行填充,或者使用0进行填充:
merged.fillna(method='ffill', inplace=True)
print(merged)

输出结果:

            value1  value2
date                     
2021-01-01     1.0     4.0
2021-01-02     2.0     4.0
2021-01-03     3.0     5.0
2021-01-04     3.0     6.0

现在,我们已经成功地合并了不匹配的时间序列,并使用前一个非NaN值进行填充。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:如何用Pandas合并 “不匹配的 “时间序列 - Python技术站

(0)
上一篇 2023年3月27日
下一篇 2023年3月27日

相关文章

  • 如何在Python中进行邓恩氏检验

    邓恩氏检验(Dunn’s test)是一种多重比较的非参数检验方法,常用于比较三组及以上的数据。在Python中,我们可以使用scipy.stats模块中的posthoc_dunn()函数进行邓恩氏检验。 下面是一个具体的例子,假设我们有三组数据group1、group2和group3,需要进行邓恩氏检验。 首先,我们需要导入scipy.stats模块和需要…

    python-answer 2023年3月27日
    00
  • 在Pandas中用多个过滤器选择行

    在 Pandas 中,我们可以使用多个过滤器选择行。具体而言,我们可以使用多个布尔数组(或者一个布尔序列或复合筛选器)将它们组合在一起,从而创建一个新的布尔数组,用于选择 DataFrame 中的行。 以下是在 Pandas 中用多个过滤器选择行的步骤: 创建一个基本的布尔数组过滤器,用于选择 DataFrame 的初始子集。这可以是通过单个条件筛选器获得的…

    python-answer 2023年3月27日
    00
  • 用Pandas和Seaborn进行KDE绘图可视化

    KDE(核密度估计)是一种非参数估计方法,用于从数据样本中获取概率密度函数。Pandas和Seaborn是两个Python数据分析库,它们提供了很多实用的功能和工具,可用于数据可视化和处理。 为了用Pandas和Seaborn进行KDE绘图可视化,我们需要完成以下步骤: 加载数据:使用Pandas库中的read_csv()函数或其他读取文件数据的函数从数据文…

    python-answer 2023年3月27日
    00
  • Python – 用Pandas逐列缩放数字

    好的!Python中的Pandas库是非常强大的数据处理工具之一。其中,逐列缩放数字是一个实用的数据预处理技巧,可以在机器学习或深度学习任务中使用。 这里,我们将提供一个步骤清晰的教程,说明如何在Python中用Pandas逐列缩放数字。具体而言,我们将依次介绍以下主题: Pandas的简介 缩放数字的基础知识 使用Pandas进行数字缩放的具体步骤 希望这…

    python-answer 2023年3月27日
    00
  • Python中的Pandas.get_option()函数

    Pandas是Python中用于数据分析和操作的一个强大的数据处理库,它提供了许多内置函数,Pandas.get_option()函数就是其中的一个。这个函数可以用来获取Pandas中的全局选项值。下面详细讲解一下这个函数的使用方法和参数含义。 语法 pandas.get_option(pat, **kwargs) 参数 pat:字符串,用于匹配要查找的选项…

    python-answer 2023年3月27日
    00
  • 如何用Python Pandas在Excel中过滤和保存数据为新文件

    首先,需要安装Python Pandas库。可以使用以下命令安装Pandas: pip install pandas 安装完毕后,就可以使用Pandas的DataFrame对象来加载Excel文件并对数据进行筛选和处理。 假设我们有以下Excel文件”data.xlsx”,它包含了一些销售数据: Date Product Amount 2021-01-01 …

    python-answer 2023年3月27日
    00
  • 在Python中替换CSV文件的列值

    想要在Python中替换CSV文件中的列值,可以通过以下步骤实现: 1.导入需要用到的包,包括csv、pandas等。 import csv import pandas as pd 2.读取CSV文件中的数据,使用pandas的read_csv函数。 df=pd.read_csv(‘file_path.csv’) 其中,‘file_path.csv’是你要读…

    python-answer 2023年3月27日
    00
  • 如何在Pandas中读取一个文件夹中的所有CSV文件

    在 Pandas 中读取一个文件夹中的所有 CSV 文件可以采用以下步骤: 首先导入 Pandas 库 import pandas as pd 通过 os 库或者 glob 库获取整个文件夹中的 CSV 文件名列表。os 库提供了一个 listdir 函数,可以获取文件夹中所有文件的文件名列表,而 glob 库则可以更加方便地使用通配符获取符合条件的文件名列…

    python-answer 2023年3月27日
    00
合作推广
合作推广
分享本页
返回顶部