如何在Python中使用pandas做vLookup

在Python中使用pandas做vLookup可以使用merge方法。下面是详细步骤:

首先,我们需要导入pandas库

import pandas as pd

然后,我们需要创建两个数据表,一个是主表(left table),一个是参照表(right table)。每个表都应该有至少一个共同的列名以供合并。

# 创建主表
df1 = pd.DataFrame({'key': ['A', 'B', 'C', 'D'], 'value': [1, 2, 3, 4]})

# 创建参照表
df2 = pd.DataFrame({'key': ['B', 'D', 'E', 'F'], 'value': [5, 6, 7, 8]})

现在,我们可以使用 merge 方法将两个数据表合并在一起,并根据key列进行匹配。在这里,我们使用left join,保留df1中所有的行。

# 使用 merge 方法将两个数据表合并在一起
merged_df = pd.merge(df1, df2, on='key', how='left')

我们可以检查一下是否成功匹配。

# 打印合并后的数据表
print(merged_df)

输出:

  key  value_x  value_y
0   A        1      NaN
1   B        2      5.0
2   C        3      NaN
3   D        4      6.0

可以看到,在新的数据框中有两个value列。一个是原来的value_x,它来自df1,另一个是value_y,它来自df2。

最后,我们可以将value_x和value_y相加创建一个新的列。

# 创建新的列
merged_df['new_value'] = merged_df['value_x'] + merged_df['value_y']

# 打印合并后的数据表
print(merged_df)

输出:

  key  value_x  value_y  new_value
0   A        1      NaN        NaN
1   B        2      5.0        7.0
2   C        3      NaN        NaN
3   D        4      6.0       10.0

现在,我们已经成功在Python中使用pandas做vLookup了。需要注意的是,在实际操作中,可能需要对数据表进行一些列名和缺失值的处理。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:如何在Python中使用pandas做vLookup - Python技术站

(1)
上一篇 2023年3月27日
下一篇 2023年3月27日

相关文章

  • inplace在Pandas中是什么意思

    在 Pandas 中,inplace 是 DataFrame 的一个方法参数,用于决定是否更新原来的 DataFrame 对象或返回一个新的 DataFrame 对象。 当 inplace 参数的值为 True 时,数据集将直接在原来的 DataFrame 中进行修改,也就是说对原始数据集的修改将直接体现出来,而不是返回一个新的 DataFrame。这意味着…

    python-answer 2023年3月27日
    00
  • Pandas解析JSON数据集

    Pandas是一个功能强大的数据处理库,它包含了许多用于解析各种数据格式的工具。其中,Pandas解析JSON数据集的功能非常出色,可以轻松地从JSON文件或字符串中提取数据,并转换为Pandas DataFrame格式,方便进一步的分析和处理。 以下是利用Pandas解析JSON数据集的具体步骤: 1. 导入Pandas库 首先需要导入Pandas库,如下…

    python-answer 2023年3月27日
    00
  • 用Matplotlib在条形图上绘制Pandas数据框架的多列数据

    在Matplotlib中,使用bar或barh方法可以绘制条形图。在Pandas中,数据框架(DataFrame)支持直接使用plot.bar()或plot.barh()方法来绘制条形图。 具体地说,如果要在条形图上绘制Pandas数据框架的多列数据,可以采用以下步骤: 导入必要的模块和数据 “`python import matplotlib.pyplo…

    python-answer 2023年3月27日
    00
  • 如何在Pandas中用查询函数根据列值过滤行

    在Pandas中,可以使用查询函数来根据列值过滤行。以下是详细的讲解: 准备数据 首先,需要先准备一组数据。我们可以使用Pandas的DataFrame来存储数据。假设我们要准备一个学生成绩表,包含以下几个字段:姓名(name)、学号(id)、语文成绩(chinese)、数学成绩(math)、英语成绩(english)。 代码如下: import panda…

    python-answer 2023年3月27日
    00
  • 如何修复:module ‘pandas’ has no attribute ‘dataframe’

    首先,需要明确的是 “module ‘pandas’ has no attribute ‘dataframe’” 这个错误提示的意思是:Pandas 模块中没有名为 “dataframe” 的属性或方法。 下面是修复该错误的可能方法: 1.检查拼写错误 在代码中查找是否存在 “pandas.dataframe” 的拼写错误,可以通过检查大小写,拼写和空格来确…

    python-answer 2023年3月27日
    00
  • Python与Pandas和XlsxWriter组合工作 – 1

    Python与Pandas和XlsxWriter组合工作详解(上) 介绍 Python是一种非常流行的编程语言,因为它易于学习,支持多种编程范式,并且具有大量的第三方库和工具。 Pandas是Python中最受欢迎的数据处理库之一,它提供了强大的数据结构和数据分析工具。 XlsxWriter是一种非常流行的Python库,用于将数据写入Excel文件中。它提…

    python-answer 2023年3月27日
    00
  • 在Python中使用Pandas替换缺失值

    Pandas是Python中用于处理数据的一个库。在数据分析和数据清洗中,经常会遇到缺失值的情况。Pandas中提供了一些方法来替换缺失值。 Pandas中的缺失值表示 Pandas中的缺失值有两种表示方式:NaN和None。其中,NaN是Not a Number的缩写,它是一个浮点数,表示一个在算术运算中不合法的结果。而None是Python中的一个特殊对…

    python-answer 2023年3月27日
    00
  • 在Python中替换CSV文件的列值

    想要在Python中替换CSV文件中的列值,可以通过以下步骤实现: 1.导入需要用到的包,包括csv、pandas等。 import csv import pandas as pd 2.读取CSV文件中的数据,使用pandas的read_csv函数。 df=pd.read_csv(‘file_path.csv’) 其中,‘file_path.csv’是你要读…

    python-answer 2023年3月27日
    00
合作推广
合作推广
分享本页
返回顶部