如何在Python中对CSV进行多列排序

可以使用Python的内置库csv和operator来对CSV进行多列排序。

首先,我们需要读取CSV文件并将其转换为list对象:

import csv

with open('data.csv', 'r') as file:
    reader = csv.reader(file)
    data = list(reader)

接下来,我们可以使用sorted()函数以及operator库中的itemgetter()函数来对多列进行排序。假设我们要按照第一列升序排列,第二列降序排列:

import operator

sorted_data = sorted(data, key=operator.itemgetter(0, 1), reverse=(False, True))

在调用sorted()函数时,key参数传入一个lambda函数或operator.itemgetter()函数来指定排序规则。其中,operator.itemgetter()函数可以接受多个参数,用于指定排序的列。reverse参数用于指定排序的顺序,True为降序,False为升序。

最后,我们可以将排好序的数据写回CSV文件中:

with open('sorted_data.csv', 'w', newline='') as file:
    writer = csv.writer(file)
    writer.writerows(sorted_data)

完整的代码实现如下:

import csv
import operator

with open('data.csv', 'r') as file:
    reader = csv.reader(file)
    data = list(reader)

sorted_data = sorted(data, key=operator.itemgetter(0, 1), reverse=(False, True))

with open('sorted_data.csv', 'w', newline='') as file:
    writer = csv.writer(file)
    writer.writerows(sorted_data)

其中,'data.csv'为原始的CSV文件路径,'sorted_data.csv'为排序后的CSV文件路径。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:如何在Python中对CSV进行多列排序 - Python技术站

(0)
上一篇 2023年3月27日
下一篇 2023年3月27日

相关文章

  • 从Pandas数据框架中删除列中有缺失值或NaN的行

    在Pandas中,我们可以使用dropna()方法来从数据框架中删除具有缺失值或NaN值的行或列。 为了删除列中有缺失值或NaN的行,我们需要在dropna()方法中指定轴向参数axis=0。此外,我们还需要指定subset参数以确定要处理的列。 以下是完整的过程及示例代码: 导入Pandas库并读入数据: import pandas as pd df = …

    python-answer 2023年3月27日
    00
  • pandas apply 函数 实现多进程的示例讲解

    什么是pandas apply函数? Pandas库是Python中最强大的数据处理库之一,具有非常多的数据处理功能,其中DataFrame是其中最常用的数据结构。apply()函数是pandas DataFrame中非常重要的一个函数,它可以将函数应用到整个DataFrame、Series或者一部分数据集中,并且能够返回处理结果,这些结果可以是标量、列表、…

    python 2023年5月14日
    00
  • Python教程pandas数据分析去重复值

    以下是Python教程pandas数据分析去重复值的完整攻略。 pandas数据分析去重复值 Pandas数据框架简介 Pandas是一个Python库,提供数据分析功能。Pandas中最主要的数据结构是“DataFrame”,它是由多个列组成的二维表格。 在Pandas中,可以通过多种方式来创建DataFrame对象,比如从文件、从字典、从列表等等。一旦创…

    python 2023年5月14日
    00
  • 如何使用Pandas打印从给定日期开始的n天的日期?

    使用Pandas可以方便地打印从给定日期开始的n天的日期,具体步骤如下: 导入Pandas库: import pandas as pd 定义日期范围: start_date = ‘2021-01-01’ # 起始日期 num_days = 10 # 要打印的天数 date_range = pd.date_range(start_date, periods=n…

    python-answer 2023年3月27日
    00
  • Python缺失值处理方法

    下面我会详细讲解Python的缺失值处理方法,并附上两条示例说明。 什么是缺失值? 缺失值是数据分析中很常见的问题,缺失值意味着某个数据点的值没有在数据集中出现,或者该数据点中存在空值或NaN。 在Python中,通常使用numpy和pandas库对缺失值进行处理。 缺失值处理方法 以下是Python中常用的缺失值处理方法: 删除数据 最简单的方法是删除包含…

    python 2023年5月14日
    00
  • Python使用pymysql从MySQL数据库中读出数据的方法

    下面是关于“Python使用pymysql从MySQL数据库中读出数据的方法”的攻略。 准备工作 在使用Python读取MySQL数据库之前,需要先安装pymysql库,用于连接数据库和执行SQL语句。可以通过以下方式进行安装: pip install PyMySQL 安装完成之后,需要在Python中导入pymysql库: import pymysql 连…

    python 2023年6月13日
    00
  • 在Pandas中使用iloc[]和iat[]从数据框架中选择任何行

    在Pandas中,iloc[]和iat[]都可以用于选择数据框架中的特定行。下面我们详细的介绍一下它们的用法。 iloc[] iloc[]的格式为dataframe.iloc[row_indexer, column_indexer],其中row_indexer表示行的标号,column_indexer表示列的标号。如果只需要选取行,column_indexe…

    python-answer 2023年3月27日
    00
  • Python Pandas pandas.read_sql_query函数实例用法分析

    Python Pandas pandas.read_sql_query 函数实例用法分析 什么是 pandas.read_sql_query 函数? pandas.read_sql_query 函数是 Python Pandas 库提供的 SQL 查询接口,用于查询 SQL 数据库中的数据,并将结果以 pandas.DataFrame 的形式返回,方便进行数…

    python 2023年5月14日
    00
合作推广
合作推广
分享本页
返回顶部