如何在Pandas DataFrame中把浮点数转换为数据时间

Pandas中,将浮点数转换为日期时间有两种常见的方式:使用to_datetime()函数或使用astype()函数。下面分别详细介绍这两种方法。

使用to_datetime()函数

使用to_datetime()函数可以将浮点数转换为日期时间。to_datetime()函数需要传入一个Series或DataFrame对象,以及日期时间格式的字符串。具体步骤如下:

  1. 构造一个Pandas DataFrame,包含一个浮点数列。
import pandas as pd

df = pd.DataFrame({'time_float': [1632081254.789, 1632081254.123, 1632081254.456]})
  1. 将浮点数列转换为日期时间列,需要指定日期时间格式的字符串。例如,'%Y-%m-%d %H:%M:%S.%f' 表示年-月-日 时:分:秒.毫秒。可以根据实际需要进行更改。
df['time'] = pd.to_datetime(df['time_float'], unit='s', format='%Y-%m-%d %H:%M:%S.%f')

解释一下参数的含义:
- 'time_float':浮点数列的列名。
- unit='s':指定浮点数的单位为秒。
- format='%Y-%m-%d %H:%M:%S.%f':指定日期时间格式的字符串。

  1. 查看转换后的日期时间列。
print(df)

输出结果:

    time_float                    time
0  1632081254.789 2021-09-19 09:40:54.789
1  1632081254.123 2021-09-19 09:40:54.123
2  1632081254.456 2021-09-19 09:40:54.456

使用astype()函数

使用astype()函数可以将浮点数转换为整数,然后使用Pandas的to_datetime()函数将整数转换为日期时间。具体步骤如下:

  1. 构造一个Pandas DataFrame,包含一个浮点数列。
import pandas as pd

df = pd.DataFrame({'time_float': [1632081254.789, 1632081254.123, 1632081254.456]})
  1. 将浮点数列转换为整数列。
df['time_int'] = (df['time_float']).astype(int)

解释一下:使用astype()函数将浮点数列转换成整数列,由于转换后是以秒为单位的整数列,因此可以直接使用Pandas的to_datetime()函数进行日期时间的转换。

  1. 将整数列转换为日期时间列。
df['time'] = pd.to_datetime(df['time_int'], unit='s')

解释一下参数的含义:
- 'time_int':整数列的列名。
- unit='s':指定整数的单位为秒。

  1. 删除整数列。
df = df.drop('time_int', axis=1)

解释一下:由于整数列已经没有用了,因此可以使用drop()函数将其删除。

  1. 查看转换后的日期时间列。
print(df)

输出结果:

    time_float                time
0  1632081254.789 2021-09-19 09:40:54
1  1632081254.123 2021-09-19 09:40:54
2  1632081254.456 2021-09-19 09:40:54

这就是将浮点数转换为日期时间的完整攻略。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:如何在Pandas DataFrame中把浮点数转换为数据时间 - Python技术站

(0)
上一篇 2023年3月27日
下一篇 2023年3月27日

相关文章

  • Python 中pandas索引切片读取数据缺失数据处理问题

    Python中pandas索引切片读取数据处理问题是数据分析中非常重要的一个问题,这里给出一份完整的攻略: 问题描述 在处理数据分析的过程中,经常会使用到pandas对数据进行索引、切片和读取操作。但是,当数据中存在缺失值时,就会出现数据获取的错误。 例如:使用pandas对一个DataFrame进行索引、切片操作时,当某些行或列中有缺失值时,就会出现“No…

    python 2023年5月14日
    00
  • NodeJS 中Stream 的基本使用

    NodeJS中Stream是一种非常重要的数据处理工具,它可以帮助我们高效地处理大量数据,在文件读写、网络传输等多个场景下都有广泛应用。下面我们来详细讲解NodeJS中Stream的基本使用。 什么是Stream 流(Stream)是Node.js中处理流式数据的一个抽象接口。Stream有四种类型:Readable、Writable、Duplex、Tran…

    python 2023年5月14日
    00
  • 浅谈python数据类型及类型转换

    这里是详细讲解“浅谈python数据类型及类型转换”的完整攻略。 一、Python数据类型 Python中常见的数据类型有以下几种: 1. 整型(int) Python中可以表示整数,例如:1, 2, 3, 4等等。整型是可以进行数值运算的。 2. 浮点型(float) 浮点型可以表示小数,例如:1.2, 3.5, 6.7等等。浮点型也是可以进行数值运算的。…

    python 2023年5月14日
    00
  • 用Pandas和Matplotlib创建棒棒糖图表

    当我们要对一些数据进行可视化展示时,棒棒糖图表(lollipop chart)是一种非常好的选择。Pandas和Matplotlib是数据科学家们最常用的可视化工具,在这里我们将使用这两个工具来创建棒棒糖图表。 首先,我们需要安装Pandas和Matplotlib。可以使用pip命令进行安装: pip install pandas matplotlib 接下…

    python-answer 2023年3月27日
    00
  • pandas的resample重采样的使用

    下面是针对”pandas的resample重采样的使用”的完整攻略: 什么是重采样 在时间序列分析中,经常需要将时间间隔调整为不同的频率,因为这也意味着相应的汇总数据的改变。 例如,我们有 1 分钟的数据,但需要 5 分钟的数据。 这就是所谓的重采样,通过这个过程,可以使用新的频率来对数据进行聚合。 resample函数的使用 resample函数是一种数据…

    python 2023年5月14日
    00
  • 在连接两个Pandas数据框架时防止重复的列

    在连接两个Pandas数据框架时,如果两个数据框架中的列名重复,那么连接时可能会出现一些问题,比如连接后的数据框架中的列名不好区分或者连接出来的结果不正确等。因此,我们需要防止列名重复。有以下几种方法可以实现: 重命名列名:在连接之前,可以对一个或两个数据框架的列名进行重命名,从而确保连接时不会出现列名重复的情况。可以使用Pandas的rename方法来实现…

    python-answer 2023年3月27日
    00
  • pandas去除重复值的实战

    当我们在数据分析中使用pandas进行清洗和处理数据时,经常会遇到数据中存在重复值的情况。为了保证数据准确性,我们需要对重复值进行处理。 在pandas中,我们可以使用drop_duplicates()方法来去除重复值。下面是去除重复值的完整攻略: 1. 导入必要的库和数据集 首先,我们需要导入pandas和需要处理的数据集。例如: import panda…

    python 2023年5月14日
    00
  • Pandas数据框架中的计数值

    Pandas是Python中最为流行的数据处理库之一,主要是因为其高效、简单、灵活和易于使用。Pandas中的数据框架(DataFrame)是一种二维表格数据结构,支持各种数据类型(如整数、浮点数、字符串等),并提供了丰富的功能(如筛选、排序、分组、聚合等)。 在Pandas中,计数是一种在数据框架中非常常见的操作,可以用来统计某些列或行中特定值的数量。Pa…

    python-answer 2023年3月27日
    00
合作推广
合作推广
分享本页
返回顶部