如何在Pandas DataFrame中把字符串转换成浮点数

将字符串转换为浮点数在 Pandas DataFrame 中是一个常见的操作,可以使用 astype() 方法来完成。具体攻略如下:

  1. 读取数据:首先读取 Pandas DataFrame 中的数据,可以使用 pd.read_csv() 方法从 CSV 文件中读取,也可以使用 pd.DataFrame() 方法从列表或字典中创建。

  2. 确认列名:确认要转换为浮点数的列名,可以使用 df.columns 方法列出 DataFrame 中所有列的名称,也可以直接使用类似 df['column_name'] 的方式访问某一列。

  3. 转换数据类型:使用 astype() 方法将字符串转换为浮点数。astype() 方法可以接受一个字符串参数,表示需要转换到的数据类型,例如:'float', 'int', 'datetime' 等等。对于转换为浮点数,可以使用 astype('float')。

  4. 处理错误数据:在转换数据类型的过程中,可能会出现错误数据(无法转换为浮点数的数据),需要进行处理。可以使用 Pandas 提供的缺失值标记 NaN 将这些错误数据替换掉。

下面是一个示例代码,演示了如何在 Pandas DataFrame 中将字符串转换为浮点数:

import pandas as pd

# 读取数据
df = pd.read_csv('data.csv')

# 确认列名
column_name = 'price'
if column_name not in df.columns:
    raise ValueError(f'Column "{column_name}" does not exist in the DataFrame!')

# 转换数据类型
df[column_name] = pd.to_numeric(df[column_name], errors='coerce')
# errors='coerce' 的作用是将无法转换为浮点数的数据替换为 NaN

# 处理错误数据
df[column_name].fillna(value=0, inplace=True)
# 将 NaN 替换为 0

print(df.head())

以上代码中的 data.csv 文件内容如下:

name,price
Apple,2.1
Banana,1.7
Carrot,1.0
Potato,2.5
Orange,2.0
Grape,3.3
Tomato,1.6
Cabbage,NaN

运行上述代码后,输出结果为:

      name  price
0    Apple    2.1
1   Banana    1.7
2   Carrot    1.0
3   Potato    2.5
4   Orange    2.0
5    Grape    3.3
6   Tomato    1.6
7  Cabbage    0.0

可以看到,最后一行的数据无法转换为浮点数,被替换为了 0。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:如何在Pandas DataFrame中把字符串转换成浮点数 - Python技术站

(0)
上一篇 2023年3月27日
下一篇 2023年3月27日

相关文章

  • 用Pandas的read_html()来抓取维基百科的表格

    当需要从互联网上获取数据时,网页上的表格是一个很好的数据源。而Python中的Pandas库提供了一个方便的方法来获取HTML表格。这个方法是read_html(),它可以从web页面上的table标签中提取出数据。 使用read_html()来抓取维基百科的表格有以下步骤: 1.导入所需的库 import pandas as pd 2.创建一个URL变量,…

    python-answer 2023年3月27日
    00
  • Python 数据处理库 pandas进阶教程

    Python数据处理库pandas进阶教程 本教程分为以下几个部分: Pandas的基本数据结构 数据的读取和写入 数据清洗和预处理 数据的合并和分组 时间序列数据的处理 数据的可视化 1. Pandas的基本数据结构 Pandas的两种基本数据结构是Series和DataFrame。 Series是一种类似于一维数组的对象,其中的每个元素都有一个标签(或索…

    python 2023年5月14日
    00
  • Python Pandas中缺失值NaN的判断,删除及替换

    当我们在处理数据时,常常会遇到一些空值或缺失值的情况,而在Python Pandas中,缺失值一般表示为NaN。本文将详细讲解在Python Pandas中如何判断、删除和替换缺失值NaN。 判断缺失值 在Python Pandas中,我们可以使用isnull()和notnull()两个函数来判断缺失值。isnull()函数返回一个与原数据相同形状的布尔值对…

    python 2023年5月14日
    00
  • Pandas最常用的7种字符串处理方法

    Pandas是一个强大的数据处理工具,除了能处理数值和时间序列等数据类型外,还能够方便地处理字符串数据。 常用的字符串处理函数如下表所示: 函数名称 函数功能说明 lower() 将的字符串转换为小写。 upper() 将的字符串转换为大写。 len() 得出字符串的长度。 strip() 去除字符串两边的空格(包含换行符)。 split() 用指定的分割符…

    Pandas 2023年3月5日
    00
  • Pandas 格式化日期时间

    当进行数据分析时,我们会遇到很多带有日期、时间格式的数据集,在处理这些数据集时,就需要对日期时间做统一的格式化处理。 比如“Wednesday, June 6, 2023”可以写成“6/6/23”,或“06-06-2023”。 在 Pandas 中,我们可以使用 pd.to_datetime() 函数将日期字符串或时间戳转换为 Pandas 的日期时间类型。…

    Pandas 2023年3月6日
    00
  • 使用Pandas 实现MySQL日期函数的解决方法

    下面是使用Pandas实现MySQL日期函数的解决方法的完整攻略。 问题描述 在使用MySQL数据库时,我们常常会用到MySQL日期函数,比如DATE_FORMAT、DATE_ADD、DATE_SUB等。但是在使用Pandas操作MySQL数据时,并不能直接使用这些MySQL日期函数,需要采用其他方法实现。那么如何使用Pandas实现MySQL日期函数呢? …

    python 2023年5月14日
    00
  • Pandas中Series的创建及数据类型转换

    下面是详细的Pandas中Series的创建及数据类型转换攻略。 1. Series的创建 Pandas的Series是一种一维的数组对象,可以存储任意的数据类型。下面是通过不同方式创建Series的示例: 1.1 从列表创建Series 使用Pandas的Series函数,可以通过一个Python列表创建Series,代码示例如下: import pand…

    python 2023年5月14日
    00
  • 将CSV转换为Pandas DataFrame

    转换CSV文件为Pandas DataFrame的主要步骤是读取CSV文件,并将其存储为Pandas DataFrame对象。以下是将CSV文件转换为Pandas DataFrame的完整攻略。 1. 导入必要的Python库 在Python中使用Pandas库读取和处理CSV文件,因此需要导入该库以及其他一些必要的Python库。 import panda…

    python-answer 2023年3月27日
    00
合作推广
合作推广
分享本页
返回顶部