Pytorch中的学习率衰减及其用法详解

PyTorch中的学习率衰减及其用法详解

在本文中,我们将介绍PyTorch中的学习率衰减及其用法。我们将使用两个示例来说明如何在PyTorch中使用学习率衰减。

学习率衰减

学习率衰减是一种优化算法,它可以在训练过程中逐渐降低学习率。这有助于模型在训练后期更好地收敛。在PyTorch中,我们可以使用torch.optim.lr_scheduler模块来实现学习率衰减。

示例1:StepLR

StepLR是一种学习率衰减策略,它在训练过程中按照一定的步长降低学习率。示例代码如下:

import torch
import torch.nn as nn
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler

# 定义模型
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.fc1 = nn.Linear(2, 1)

    def forward(self, x):
        x = self.fc1(x)
        return x

model = Net()

# 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=0.1)

# 定义学习率衰减策略
scheduler = lr_scheduler.StepLR(optimizer, step_size=30, gamma=0.1)

# 训练模型
for epoch in range(100):
    running_loss = 0.0
    for i, data in enumerate(train_dataset, 0):
        inputs, labels = data
        optimizer.zero_grad()
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
    scheduler.step()

在上述代码中,我们定义了一个简单的全连接神经网络Net,它含一个输入层和一个输出层。然后,我们创建了一个模型实例model。我们还定义了损失函数criterion和优化器optimizer。然后,我们创建了一个StepLR学习率衰减策略,并将其应用于优化器optimizer。在训练模型的过程中,我们使用scheduler.step()函数来更新学习率。

示例2:CosineAnnealingLR

CosineAnnealingLR是一种学习率衰减策略,它在训练过程中按照余弦函数的形式降低学习率。示例代码如下:

import torch
import torch.nn as nn
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler

# 定义模型
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.fc1 = nn.Linear(2, 1)

    def forward(self, x):
        x = self.fc1(x)
        return x

model = Net()

# 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=0.1)

# 定义学习率衰减策略
scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=100)

# 训练模型
for epoch in range(100):
    running_loss = 0.0
    for i, data in enumerate(train_dataset, 0):
        inputs, labels = data
        optimizer.zero_grad()
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
    scheduler.step()

在上述代码中,我们定义了一个简单的全连接神经网络Net,它含一个输入层和一个输出层。然后,我们创建了一个模型实例model。我们还定义了损失函数criterion和优化器optimizer。然后,我们创建了一个CosineAnnealingLR学习率衰减策略,并将其应用于优化器optimizer。在训练模型的过程中,我们使用scheduler.step()函数来更新学习率。

结论

在本文中,我们介绍了PyTorch中的学习率衰减及其用法。我们使用了两个示例来说明如何在PyTorch中使用学习率衰减。我们还介绍了StepLRCosineAnnealingLR两种学习率衰减策略。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Pytorch中的学习率衰减及其用法详解 - Python技术站

(0)
上一篇 2023年5月15日
下一篇 2023年5月15日

相关文章

  • pytorch 网络参数 weight bias 初始化详解

    以下是PyTorch网络参数weight bias初始化的详细攻略,包括两个示例说明。 1. 网络参数初始化 在PyTorch中,网络参数的初始化是非常重要的,因为它可以影响模型的收敛速度和最终的性能。PyTorch提供了多种初始化方法,包括常见的均匀分布、正态分布、Xavier初始化和Kaiming初始化等。 1.1 均匀分布初始化 均匀分布初始化是一种简…

    PyTorch 2023年5月15日
    00
  • 计算pytorch标准化(Normalize)所需要数据集的均值和方差实例

    在PyTorch中,我们可以使用torchvision.transforms.Normalize函数来对数据进行标准化。该函数需要输入数据集的均值和方差,以便将数据标准化为均值为0,方差为1的形式。因此,我们需要计算数据集的均值和方差,以便使用Normalize函数对数据进行标准化。 以下是一个完整的攻略,包括两个示例说明。 示例1:计算单通道图像数据集的均…

    PyTorch 2023年5月15日
    00
  • pytorch使用指定GPU训练的实例

    在PyTorch中,我们可以使用指定的GPU来训练模型。在本文中,我们将详细讲解如何使用指定的GPU来训练模型。我们将使用两个示例来说明如何完成这些步骤。 示例1:使用单个GPU训练模型 以下是使用单个GPU训练模型的步骤: import torch import torch.nn as nn import torch.optim as optim # 检查…

    PyTorch 2023年5月15日
    00
  • PyTorch中Tensor和tensor的区别是什么

    这篇文章主要介绍“PyTorch中Tensor和tensor的区别是什么”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“PyTorch中Tensor和tensor的区别是什么”文章能帮助大家解决问题。 Tensor和tensor的区别 本文列举的框架源码基于PyTorch2.0,交互语句在0.4.1上测试通过 impo…

    2023年4月8日
    00
  • 【pytorch】带batch的tensor类型图像显示

    pytorch训练时我们一般把数据集放到数据加载器里,然后分批拿出来训练。训练前我们一般还要看一下训练数据长啥样,也就是训练数据集可视化。那么如何显示dataloader里面带batch的tensor类型的图像呢? 显示图像 绘图最常用的库就是matplotlib: pip install matplotlib 显示图像会用到matplotlib.pyplo…

    2023年4月7日
    00
  • 在Pytorch中计算自己模型的FLOPs方式

    在PyTorch中,我们可以使用thop库来计算自己模型的FLOPs。thop是一个轻量级的库,可以计算PyTorch模型的FLOPs、参数数量和模型大小等指标。下面是一个详细的攻略,演示如何在PyTorch中计算自己模型的FLOPs。 步骤一:安装thop库 首先,我们需要安装thop库。可以使用pip命令来安装thop库: pip install tho…

    PyTorch 2023年5月15日
    00
  • Python计算图片数据集的均值方差示例详解

    当我们使用深度学习模型进行图像分类、目标检测等任务时,通常需要对图像数据集进行预处理,其中包括对图像数据集进行归一化处理。而归一化处理的第一步就是计算图像数据集的均值和方差。本文将详细讲解如何使用Python计算图像数据集的均值和方差,并提供两个示例说明。 计算图像数据集的均值和方差 计算图像数据集的均值和方差的过程分为两步:首先需要将图像数据集转换为num…

    PyTorch 2023年5月15日
    00
  • PyTorch一小时掌握之神经网络分类篇

    以下是“PyTorch一小时掌握之神经网络分类篇”的完整攻略,包括两个示例说明。 示例1:使用全连接神经网络对MNIST数据集进行分类 首先,我们需要加载MNIST数据集,并将其分为训练集和测试集。然后,我们定义一个全连接神经网络,包含两个隐藏层和一个输出层。我们使用ReLU激活函数和交叉熵损失函数,并使用随机梯度下降优化器进行训练。 import torc…

    PyTorch 2023年5月15日
    00
合作推广
合作推广
分享本页
返回顶部