代码:

#集中不同的优化方式
import torch
import torch.utils.data as Data
import torch.nn.functional as F
from torch.autograd import Variable
import matplotlib.pyplot as plt

#hyper parameters 超参数
LR = 0.01
BATCH_SIZE = 32
EPOCH = 12

if __name__ == '__main__':
    #数据
    x = torch.unsqueeze(torch.linspace(-1, 1, 1000), dim=1)
    y = x.pow(2) + 0.1*torch.normal(torch.zeros(*x.size()))
    #分批处理数据
    torch_dataset = Data.TensorDataset(x,y)
    loader = Data.DataLoader(dataset = torch_dataset, batch_size=BATCH_SIZE,shuffle=True, num_workers=2)
    #定义网络
    class Net(torch.nn.Module):
        def __init__(self):
            super(Net, self).__init__()
            self.hidden = torch.nn.Linear(1, 20)
            self.predict = torch.nn.Linear(20,1)

        def forward(self, x):
            x = F.relu(self.hidden(x))
            x = self.predict(x)
            return x

    #different nets
    net_SGD = Net()
    net_Momentum = Net()
    net_RMSprop = Net()
    net_Adam = Net()
    nets = [net_SGD, net_Momentum, net_RMSprop, net_Adam]  #放到一个list中

    #different optimizers
    #momentum,alpha,betas是指定参数
    opt_SGD = torch.optim.SGD(net_SGD.parameters(), lr = LR)
    opt_Momentum = torch.optim.SGD(net_Momentum.parameters(), lr = LR, momentum=0.8)
    opt_RMSprop = torch.optim.RMSprop(net_RMSprop.parameters(), lr = LR, alpha=0.9)
    opt_Adam = torch.optim.Adam(net_Adam.parameters(), lr = LR, betas=(0.9, 0.99))
    optimizers = [opt_SGD, opt_Momentum, opt_RMSprop, opt_Adam]

    loss_func = torch.nn.MSELoss()
    losses_history = [[], [], [], []] # record loss

    for epoch in range(EPOCH):
        print('epoch', epoch)
        for step, (batch_x, batch_y) in enumerate(loader):
            b_x = Variable(batch_x)
            b_y = Variable(batch_y)
            #它接受一系列可迭代的对象作为参数,将对象中对应的元素打包成一个个tuple(元组)
            for net, opt, l_his in zip(nets, optimizers, losses_history):
                output = net(b_x)
                loss = loss_func(output,b_y)
                opt.zero_grad()
                loss.backward()
                opt.step()
                #有点不懂,为什么不是losses_history.append
                l_his.append(loss.item()) #loss recorder

    labels = ['SGD', 'Momentum', 'RMSprop', 'Adam']
    for i,l_his in enumerate(losses_history):
        plt.plot(l_his,label=labels[i])  #plt.plot根据点画线
    plt.legend(loc='best')               #给图像加上图例
    plt.xlabel('Steps')
    plt.ylabel('Loss')
    plt.ylim(0, 0.2)                     #设置y轴上的最小值和最大值                    
    plt.show()






    optimizer = torch.optim.SGD()