Python中LSTM回归神经网络时间序列预测详情

以下是Python中LSTM回归神经网络时间序列预测的完整攻略,包括两个示例。

LSTM回归神经网络时间序列预测的基本步骤

LSTM回归神经网络时间序预测的基本步骤如下:

  1. 导入必要的库
import numpy as
import pandas as pd
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
  1. 准备数据

准备时间序列数据,将其转换为适合LSTM模的格式。

class TimeSeriesDataset(Dataset):
    def __init__(self, data, seq_len):
        self.data = data
        self.seq_len = seq_len

    def __len__(self):
        return len(self.data) - self.seq_len

    def __getitem__(self, idx):
        x = self.data[idx:idx+self.seq_len]
        y = self.data[idx+self.seq_len]
        return x, y

# 加载数据
data = pd.read_csv('data.csv', header=None)
data = data.values.astype('float32')

# 划分训练集和测试集
train_size int(len(data) * 0.8)
train_data = data[:train_size]
test_data = data[train_size:]

# 标准化数据
mean = train_data.mean(axis=0)
std = train_data.std(axis=0)
train_data = (train_data - mean) / std
test_data = (test_data - mean) / std

# 创建数据集
seq_len = 10
train_dataset = TimeSeriesDataset(train_data, seq_len)
test_dataset = TimeSeriesDataset(test_data, seq_len)

# 创建数据加载器
batch_size = 32
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
  1. 定义模型

定义LSTM模型。

class LSTM(nn.Module):
    def __init__(self, input_size,_size, num_layers, output_size):
        super(LSTM, self).__init__()
        self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
        self.fc = nn.Linear(hidden_size, output_size)

    def forward(self, x):
        out, _ = self.lstm(x)
        out = out[:, -1, :]
        out = self.fc(out)
        return out
  1. 训练模型

训练LSTM模型。

# 定义模型
input_size = 1
hidden_size = 32
num_layers 2
output_size = 1
model = LSTM(input_size, hidden_size, num_layers, output_size)

# 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)

# 训练模型
num_epochs = 100
for epoch in range(num_epochs):
    for i, (x, y) in enumerate(train_loader):
        # 前向传播
        x = x.unsqueeze(-1)
        y_pred = model(x)

        # 计算损失
        loss = criterion(y_pred, y)

        # 反向传播和优化
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

    # 打印损失
    print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item()))
  1. 测试模型

测试LSTM模型。

# 测试模型
model.eval()
with torch.no_grad():
    y_pred = []
    for x, y in test_loader:
        x = x.unsqueeze(-1)
        y_pred.append(model(x).squeeze().numpy())
    y_pred = np.concatenate(y_pred)

# 反标准化数据
y_pred = y_pred * std[-1] + mean[-1]
y_true = test_data[seq_len:, -1] * std[-1] + mean[-1]

# 绘制预测结果
plt.plot(y_true, label='True')
plt.plot(y_pred, label='Predicted')
plt.legend()
plt.show()

以上是Python中LSTM回归神经网络时间序列预测的完整攻略,通过以上步骤和示例,我们可以轻松地使用LSTM模型进行时间序列预测。

示例一:使用LSTM模型预测股票价格

以下是使用LSTM模型预测股票价格的示例代码:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader

# 加载数据
data = pd.read_csv('stock.csv')
data = data['Close'].values.astype('float32')

# 划分训练集和测试集
train_size = int(len(data) * 0.8)
train_data = data[:train_size]
test_data = data[train_size:]

# 标准化数据
mean = train_data.mean()
std = train_data.std()
train_data = (train_data - mean) / std
test_data = (test_data - mean) / std

# 创建数据集
seq_len = 10
train_dataset = TimeSeriesDataset(train_data, seq_len)
test_dataset = TimeSeriesDataset(test_data, seq_len)

# 创建数据加载器
batch_size = 32
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)

# 定义模型
input_size = 1
hidden_size = 32
num_layers = 2
output_size = 1
model = LSTM(input_size, hidden_size, num_layers, output_size)

# 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)

# 训练模型
num_epochs = 100
for epoch in range(num_epochs):
    for i, (x, y) in enumerate(train_loader):
        # 前向传播
        x = x.unsqueeze(-1)
        y_pred = model(x)

        # 计算损失
        loss = criterion(y_pred, y)

        # 反向传播和优化
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

    # 打印损失
    print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item()))

# 测试模型
model.eval()
with torch.no_grad():
    y_pred = []
    for x, y in test_loader:
        x = x.unsqueeze(-1)
        y_pred.append(model(x).squeeze().numpy())
    y_pred = np.concatenate(y_pred)

# 反标准化数据
y_pred = y_pred * std + mean
y_true = test_data[seq_len:] * std + mean

# 绘制预测结果
plt.plot(y, label='True')
plt.plot(y_pred, label='Predicted')
plt.legend()
plt.show()

上面的代码使用LSTM模型预测股票价格。

示例二:使用LSTM模型预测气温

以下使用LSTM模型预测气温的示例代码:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader

# 加载数据
data = pd.read_csv('temperature.csv')
data = data['Temperature'].values.astype('float32')

# 划分训练集和测试集
train_size = int(len(data) * 0.8)
train_data = data[:train_size]
test_data = data[train_size:]

# 标准化数据
mean = train_data.mean()
std = train_data.std()
train_data = (train_data - mean) / std
test_data = (test_data - mean) / std

# 创建数据集
seq_len = 10
train_dataset = TimeSeriesDataset(train_data, seq_len)
test_dataset = TimeSeriesDataset(test_data, seq_len)

# 创建数据加载器
batch_size = 32
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)

# 定义模型
input_size = 1
hidden_size = 32
num_layers = 2
output_size = 1
model LSTM(input_size, hidden_size, num_layers, output_size)

# 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)

# 训练模型
num_epochs = 
for epoch in range(num_epochs):
    for i, (x, y) in enumerate(train_loader):
        # 前向传播
        x = x.unsqueeze(-1)
        y_pred = model(x)

        # 计算损失
        loss = criterion(y_pred, y)

        # 反向传播和优化
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

    # 打印损失
    print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item()))

# 测试模型
model.eval()
with torch.no_grad():
    y_pred = []
    for x, y in test_loader:
        x = x.unsqueeze(-1)
        y_pred.append(model(x).squeeze().numpy())
    y_pred = np.concatenate(y_pred)

# 反标准化数据
y_pred = y_pred * std + mean
y_true = test_data[seq_len:] * std + mean

# 绘制预测结果
plt.plot(y_true, label='True')
plt.plot(y_pred label='Predicted')
plt.legend()
plt.show()

上面的代码使用LSTM模型预测气温。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Python中LSTM回归神经网络时间序列预测详情 - Python技术站

(0)
上一篇 2023年5月14日
下一篇 2023年5月14日

相关文章

  • pytorch 实现多个Dataloader同时训练

    PyTorch实现多个Dataloader同时训练 在本攻略中,我们将介绍如何使用PyTorch实现多个Dataloader同时训练。我们将提供两个示例,演示如何使用PyTorch实现多个Dataloader同时训练。 问题描述 在深度学习中,我们通常需要使用多个数据集进行训练。在PyTorch中,我们可以使用Dataloader来加载数据集。但是,当我们需…

    python 2023年5月14日
    00
  • 十分钟利用Python制作属于你自己的个性logo

    十分钟利用Python制作属于你自己的个性logo Python是一种强大的编程语言,可以用于各种用途,包括制作个性化的logo。本攻略将介绍如何利用Python制作属于你自己的个性logo,包括如何使用turtle模块和如何使用Pillow模块。 使用turtle模块 turtle模块是Python中用于绘制图形的模块,可以用于制作各种类型的图形,包括lo…

    python 2023年5月14日
    00
  • 基于Keras的扩展性使用

    基于Keras的扩展性使用攻略 Keras是一个高级神经网络API,它可以运行在TensorFlow、CNTK和Theano等后端上。Keras提供了简单易用的接口,使得我们可以快速地建和训练神经网络模型。本攻略将详细讲解如何使用Keras构建和训练神经网络模型,并提供两个示例。 步骤一:安装Keras 在使用Keras之前,我们需要先安装Keras。Ker…

    python 2023年5月14日
    00
  • 详解Python如何求不同分辨率图像的峰值信噪比

    以下是关于“详解Python如何求不同分辨率图像的峰值信噪比”的完整攻略。 背景 峰值信噪比(Peak Signal-to-Noise Ratio,PSNR)是一种用于衡量图像质量的标准。本攻略将介绍如何使用Python计算不同分辨率图像的PSNR,并提供两个示例来演示如何使用这个方法。 Python如何求不同分辨率图像的峰值信噪比 以下是使用Python计…

    python 2023年5月14日
    00
  • OpenCV+python实现实时目标检测功能

    以下是关于“OpenCV+Python实现实时目标检测功能”的完整攻略。 背景 OpenCV是一个开源的计算机视觉库,它可以用于图像处理、计算机视觉和机器学习等领域。本攻略将介绍如何使用OpenCV和Python实现实时目标检测功能。 步骤 步骤一:安装OpenCV 在使用OpenCV之前,需要先安装OpenCV库。可以使用pip命令进行安装,以下是示例代码…

    python 2023年5月14日
    00
  • Python求矩阵的范数和行列式

    矩阵的范数和行列式是线性代数中的重要概念。Python提供了许多库,如NumPy和SciPy等,可以用于计算矩阵的范数和行列式。本文将介绍如何使用Python和NumPy库计算矩阵的范数和行列式,并提供两个示例。 示例一:使用Python和NumPy计算矩阵的范数 要算矩阵的范数,使用以下步骤: 导入必要的库 import numpy as np 创建一个矩…

    python 2023年5月14日
    00
  • Python根据欧拉角求旋转矩阵的实例

    Python根据欧拉角求旋转矩阵的实例 在三维计算机图形学和机器人学中,欧拉角是一种常用的描述物体旋转的方法。在Python中,我们可以使用欧拉角来计算旋转矩阵。本攻略将介绍如何使用Python根据欧拉角求旋转矩阵,并提供两个示例。 欧拉角 欧拉角是一种描述物体旋转的方法,它由三个角度组成,分别是绕x轴旋转的角度(俯仰角)、绕y轴旋转的角度(偏航角)和绕z轴…

    python 2023年5月14日
    00
  • tensorflow-gpu安装的常见问题及解决方案

    如果您在安装tensorflow-gpu时遇到了问题,可以尝试以下解决方法: 检查CUDA和cuDNN版本。tensorflow-gpu需要与CUDA和cuDNN版本兼容。可以在tensorflow官方网站上查看tensorflow-gpu与CUDA和cuDNN版本的兼容性。请确保您安装的CUDA和cuDNN版本与tensorflow-gpu兼容。 检查Py…

    python 2023年5月14日
    00
合作推广
合作推广
分享本页
返回顶部