“30秒轻松实现TensorFlow物体检测”是一种基于 TensorFlow Object Detection API 的快速实现物体检测的方法。本文将详细讲解这个方法的完整攻略,并提供两个示例说明。
“30秒轻松实现TensorFlow物体检测”的完整攻略
步骤1:安装 TensorFlow Object Detection API
首先,我们需要安装 TensorFlow Object Detection API。可以按照以下步骤进行安装:
- 克隆 TensorFlow Object Detection API 代码库:
git clone https://github.com/tensorflow/models.git
- 安装必要的依赖项:
sudo apt-get install protobuf-compiler python-pil python-lxml python-tk
pip install Cython
pip install jupyter
pip install matplotlib
- 编译 Protobufs:
cd models/research/
protoc object_detection/protos/*.proto --python_out=.
- 将
models/research
和models/research/slim
添加到 Python 路径中:
export PYTHONPATH=$PYTHONPATH:`pwd`:`pwd`/slim
步骤2:准备数据集
接下来,我们需要准备数据集。可以按照以下步骤进行准备:
-
下载数据集,并将其解压缩到合适的位置。
-
将数据集转换为 TensorFlow Record 格式:
```
python object_detection/dataset_tools/create_pascal_tf_record.py \
--label_map_path=object_detection/data/pascal_label_map.pbtxt \
--data_dir=/path/to/data \
--year=VOC2007 \
--set=train \
--output_path=/path/to/output/train.record
python object_detection/dataset_tools/create_pascal_tf_record.py \
--label_map_path=object_detection/data/pascal_label_map.pbtxt \
--data_dir=/path/to/data \
--year=VOC2007 \
--set=val \
--output_path=/path/to/output/val.record
```
步骤3:配置模型
接下来,我们需要配置模型。可以按照以下步骤进行配置:
-
选择一个预训练模型,并下载其 checkpoint 文件。
-
创建一个新的目录,并将预训练模型的 checkpoint 文件和配置文件复制到该目录中。
-
修改配置文件,以适应我们的数据集和训练参数。
步骤4:训练模型
接下来,我们需要训练模型。可以按照以下步骤进行训练:
- 运行以下命令,启动训练过程:
python object_detection/train.py \
--logtostderr \
--train_dir=/path/to/train_dir \
--pipeline_config_path=/path/to/pipeline.config
- 在训练过程中,可以使用 TensorBoard 监视训练进度:
tensorboard --logdir=/path/to/train_dir
步骤5:导出模型
最后,我们需要导出模型。可以按照以下步骤进行导出:
- 运行以下命令,导出模型:
python object_detection/export_inference_graph.py \
--input_type image_tensor \
--pipeline_config_path /path/to/pipeline.config \
--trained_checkpoint_prefix /path/to/model.ckpt-XXXX \
--output_directory /path/to/exported_model_directory
- 导出的模型可以使用 TensorFlow Serving 进行部署。
示例1:使用 TensorFlow Object Detection API 进行物体检测
下面是一个简单的示例,演示了如何使用 TensorFlow Object Detection API 进行物体检测:
# 导入必要的库
import numpy as np
import os
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfile
from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image
# 导入 Object Detection API
from object_detection.utils import ops as utils_ops
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util
# 下载模型
MODEL_NAME = 'ssd_mobilenet_v1_coco_2017_11_17'
MODEL_FILE = MODEL_NAME + '.tar.gz'
DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/'
PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'
PATH_TO_LABELS = os.path.join('object_detection/data', 'mscoco_label_map.pbtxt')
NUM_CLASSES = 90
opener = urllib.request.URLopener()
opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE)
tar_file = tarfile.open(MODEL_FILE)
for file in tar_file.getmembers():
file_name = os.path.basename(file.name)
if 'frozen_inference_graph.pb' in file_name:
tar_file.extract(file, os.getcwd())
# 加载模型
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
# 加载标签
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
# 进行物体检测
def run_inference_for_single_image(image, graph):
with graph.as_default():
with tf.Session() as sess:
# 获取输入和输出张量
ops = tf.get_default_graph().get_operations()
all_tensor_names = {output.name for op in ops for output in op.outputs}
tensor_dict = {}
for key in ['num_detections', 'detection_boxes', 'detection_scores', 'detection_classes', 'detection_masks']:
tensor_name = key + ':0'
if tensor_name in all_tensor_names:
tensor_dict[key] = tf.get_default_graph().get_tensor_by_name(tensor_name)
if 'detection_masks' in tensor_dict:
# 获取检测框的形状
detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0])
detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0])
# 重新调整掩码大小
real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32)
detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1])
detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1])
detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(detection_masks, detection_boxes, image.shape[1], image.shape[2])
detection_masks_reframed = tf.cast(tf.greater(detection_masks_reframed, 0.5), tf.uint8)
tensor_dict['detection_masks'] = tf.expand_dims(detection_masks_reframed, 0)
image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0')
# 运行推理
output_dict = sess.run(tensor_dict, feed_dict={image_tensor: np.expand_dims(image, 0)})
# 处理输出
output_dict['num_detections'] = int(output_dict['num_detections'][0])
output_dict['detection_classes'] = output_dict['detection_classes'][0].astype(np.uint8)
output_dict['detection_boxes'] = output_dict['detection_boxes'][0]
output_dict['detection_scores'] = output_dict['detection_scores'][0]
if 'detection_masks' in output_dict:
output_dict['detection_masks'] = output_dict['detection_masks'][0]
return output_dict
# 加载图片
PATH_TO_IMAGE = 'test.jpg'
image = Image.open(PATH_TO_IMAGE)
image_np = np.array(image)
# 进行物体检测
output_dict = run_inference_for_single_image(image_np, detection_graph)
# 可视化结果
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
output_dict['detection_boxes'],
output_dict['detection_classes'],
output_dict['detection_scores'],
category_index,
instance_masks=output_dict.get('detection_masks'),
use_normalized_coordinates=True,
line_thickness=8)
plt.figure(figsize=(12, 8))
plt.imshow(image_np)
plt.show()
在这个示例中,我们首先下载了一个预训练模型,并加载了该模型的 checkpoint 文件和配置文件。然后,我们使用 Object Detection API 进行物体检测,并使用 Matplotlib 可视化了检测结果。
示例2:使用 TensorFlow Object Detection API 进行实时物体检测
下面是另一个示例,演示了如何使用 TensorFlow Object Detection API 进行实时物体检测:
# 导入必要的库
import numpy as np
import os
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfile
from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image
import cv2
# 导入 Object Detection API
from object_detection.utils import ops as utils_ops
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util
# 下载模型
MODEL_NAME = 'ssd_mobilenet_v1_coco_2017_11_17'
MODEL_FILE = MODEL_NAME + '.tar.gz'
DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/'
PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'
PATH_TO_LABELS = os.path.join('object_detection/data', 'mscoco_label_map.pbtxt')
NUM_CLASSES = 90
opener = urllib.request.URLopener()
opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE)
tar_file = tarfile.open(MODEL_FILE)
for file in tar_file.getmembers():
file_name = os.path.basename(file.name)
if 'frozen_inference_graph.pb' in file_name:
tar_file.extract(file, os.getcwd())
# 加载模型
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
# 加载标签
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
# 进行实时物体检测
cap = cv2.VideoCapture(0)
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
while True:
# 读取视频帧
ret, image_np = cap.read()
# 进行物体检测
output_dict = run_inference_for_single_image(image_np, detection_graph)
# 可视化结果
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
output_dict['detection_boxes'],
output_dict['detection_classes'],
output_dict['detection_scores'],
category_index,
instance_masks=output_dict.get('detection_masks'),
use_normalized_coordinates=True,
line_thickness=8)
# 显示结果
cv2.imshow('object detection', cv2.resize(image_np, (800, 600)))
if cv2.waitKey(25) & 0xFF == ord('q'):
cv2.destroyAllWindows()
break
在这个示例中,我们首先下载了一个预训练模型,并加载了该模型的 checkpoint 文件和配置文件。然后,我们使用 Object Detection API 进行实时物体检测,并使用 OpenCV 显示了检测结果。
总结:
以上是“30秒轻松实现TensorFlow物体检测”的完整攻略。在这个攻略中,我们首先安装了 TensorFlow Object Detection API,并准备了数据集。然后,我们配置了模型,并使用训练数据训练了模型。最后,我们导出了模型,并使用 Object Detection API 进行物体检测。本文还提供了两个示例,演示了如何使用 TensorFlow Object Detection API 进行物体检测和实时物体检测。
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:30秒轻松实现TensorFlow物体检测 - Python技术站