动态开点线段树&线段树合并学习笔记

动态开点线段树

使用场景

  1. \(4 \times n\) 开不下。
  2. 值域需要平移(有负数)。

什么时候开点

显然,访问的节点不存在时(只会在修改递归时开点)。

trick

区间里面有负数时,\(mid = (l + R - 1) / 2\)

防止越界。

例如区间 \([-1,0]\)

开点上限

考虑到 update 一次最多开 \(\log V\) 个点(最多递归 \(\log V\)次)。所以总空间应当开 \(O(m \log n)\)

代码

#include<bits/stdc++.h> 
#define int long long
using namespace std;
int tot;
int n,q;
const int maxn = 4e6+114;
struct Node{
	int val, lt, rt, tag;
}tree[maxn];
void pushup(int &x){
	tree[x].val=tree[tree[x].lt].val+tree[tree[x].rt].val;
}
void addtag(int &x,int l,int r,int v){
	if(x==0){
		x=++tot;
	}
	tree[x].val+=(r-l+1)*v;
	tree[x].tag+=v;
}
void pushdown(int &x,int l,int r){
	if(l>r) return ;
	int mid=(l+r)/2;
	addtag(tree[x].lt,l,mid,tree[x].tag);
	addtag(tree[x].rt,mid+1,r,tree[x].tag);
	tree[x].tag=0;
}
int ask(int &x,int lt,int rt,int l,int r){
	if(rt<l||r<lt){
		return 0;
	}
	if(l<=lt&&rt<=r){
		return tree[x].val;
	}
	int mid=(lt+rt)/2;
	pushdown(x,lt,rt);
	int sum=0;
	sum+=ask(tree[x].lt,lt,mid,l,r);
	sum+=ask(tree[x].rt,mid+1,rt,l,r);
	return sum;
}
void add(int &x,int lt,int rt,int l,int r,int v){
	if(rt<l||r<lt){
		return ;
	}
	if(l<=lt&&rt<=r){
		addtag(x,lt,rt,v);
		return ;
	}
	int mid=(lt+rt)/2;
	pushdown(x,lt,rt);
	add(tree[x].lt,lt,mid,l,r,v);
	add(tree[x].rt,mid+1,rt,l,r,v);
	pushup(x);
}
int root;
signed main(){
	int n,q;
	cin>>n>>q;
	root=++tot;
	for(int i=1;i<=n;i++){
		int x;
		cin>>x;
		add(root,1,n,i,i,x);
	}
	for(int i=1;i<=q;i++){
		int op;
		cin>>op;
		if(op==1){
			int x,y,k;
			cin>>x>>y>>k;
			add(root,1,n,x,y,k);
		}
		else{
			int x,y;
			cin>>x>>y;
			cout<<ask(root,1,n,x,y)<<'\n';
		}
	}
}

例题 1

题目传送门

化简题意得维护一个 01 区间,维护区间覆盖,取反以及查询第一个出现的 0

显然这个很鬼畜。

首先考虑怎么回答询问。

可以维护区间和,然后在线段树上二分。

然后考虑覆盖。

这个很显然可以维护一个覆盖标记。

那取反呢?

可以当取反和覆盖标记在同一节点时强制消除一个。

显然,取反就是让覆盖标记也取反。

那么就可以写出代码了。

#include<bits/stdc++.h>
#define int long long
using namespace std;
const int maxn = 4e6+1140;
const int inf = 1e18;
int tot;
struct Node{
	long long lc,rc,val,tag1,tag2;
}tree[maxn];//val 表示区间中 1 的个数 
void pushup(int x){
	tree[x].val=tree[tree[x].lc].val+tree[tree[x].rc].val;
}
void addtag1(int &x,int lt,int rt,int tag)/*翻转*/{
	if(x==0) x=++tot;
	if(tag==0) return ;
	if(tree[x].tag1==1){
		tree[x].tag1=0;
		tree[x].val=(rt-lt+1)-tree[x].val;
		return ;
	}
	tree[x].tag1=1;
	if(tree[x].tag2!=0){
		tree[x].tag1=0;
		tree[x].tag2=((tree[x].tag2-1)^1)+1;
		tree[x].val=(tree[x].tag2-1)*(rt-lt+1);
		return ;
	}
	tree[x].val=(rt-lt+1)-tree[x].val;
	
	return ;
}
void addtag2(int &x,int lt,int rt,int tag){
	if(x==0) x=++tot;
	if(tag==0) return ;
	tree[x].tag1=0;
	tree[x].val=(tag-1)*(rt-lt+1);
	tree[x].tag2=tag;
	//cout<<x<<' '<<lt<<' '<<rt<<'\n';
	//cout<<lt<<' '<<rt<<' '<<tree[x].val<<'\n';
	return ;
}
void pushdown(int x,int lt,int rt){
	if(lt>=rt) return ;
	int mid = (lt+rt-1)/2;
	addtag1(tree[x].lc,lt,mid,tree[x].tag1);
	addtag1(tree[x].rc,mid+1,rt,tree[x].tag1);
	tree[x].tag1=0;
	addtag2(tree[x].lc,lt,mid,tree[x].tag2);
	addtag2(tree[x].rc,mid+1,rt,tree[x].tag2);	
	tree[x].tag2=0;
}
void reve(int &x,int l,int r,int lt,int rt){
	if(r<lt||l>rt) return ;
	if(r<=rt&&l>=lt){
		addtag1(x,l,r,1);
		return ;
	}
	int mid=(l+r-1)/2;
	pushdown(x,l,r);
	reve(tree[x].lc,l,mid,lt,rt);
	reve(tree[x].rc,mid+1,r,lt,rt);
	pushup(x);
}
void cover(int &x,int l,int r,int lt,int rt,int tag){
	if(r<lt||l>rt) return ;
	if(r<=rt&&l>=lt){
		//cout<<"c:"<<l<<' '<<r<<'\n';
		addtag2(x,l,r,tag);
		return ;
	}
	int mid=(l+r-1)/2;
	pushdown(x,l,r);
	cover(tree[x].lc,l,mid,lt,rt,tag);
	cover(tree[x].rc,mid+1,r,lt,rt,tag);
	pushup(x);
}
int query(int &x,int l,int r){
	if(l==r){
		return l;
	}
	pushdown(x,l,r);
	int mid = (l+r-1)/2;
	if(tree[tree[x].lc].val<(mid-l+1)){
		return query(tree[x].lc,l,mid);
	}
	else{
		return query(tree[x].rc,mid+1,r);
	}
}
int ask(int &x,int l,int r,int lt,int rt){
	if(r<lt||l>rt) return 0;
	if(r<=rt&&l>=lt) return tree[x].val;
	int mid=(l+r-1)/2;
	int sum=0;
	pushdown(x,l,r);
	sum+=ask(tree[x].lc,l,mid,lt,rt);
	sum+=ask(tree[x].rc,mid+1,r,lt,rt);
	return sum;
}
inline int read(){
    int x=0,f=1;
    char ch=getchar();
    while(ch<'0'||ch>'9'){
        if(ch=='-')
            f=-1;
        ch=getchar();
    }
    while(ch>='0'&&ch<='9'){
        x=(x<<1)+(x<<3)+(ch^48);
        ch=getchar();
    }
    return x*f;
}
inline void write(int x) { if (x < 0) putchar('-'), x = -x; if (x > 9) write(x / 10); putchar(x % 10 + '0'); }
int n,q,root;
signed main(){
	q=read();
	n=inf;
	root=1,tot=1;
	while(q--){
		int op;
		op=read();
		if(op==1){
			int l,r;
			l=read();
			r=read();
			cover(root,1,n,l,r,2);
		}
		else if(op==2){
			int l,r;
			l=read(),r=read();
			cover(root,1,n,l,r,1);
		}
		else{
			int l,r;
			l=read(),r=read();
			reve(root,1,n,l,r);
		}
		write(query(root,1,n));
		putchar('\n');
	}
	return 0;
}

但是这样过不了,猜猜为什么?

线段树合并

在一个树形结构中每一个节点需要开一个权值线段树且区间范围完全一致)。

复杂度分析

一下分析建立在 树形结构合并 的前提下。

注意到在合并的时候需要递归 \(\log n\) 层当且仅仅当一棵线段树和另一棵线段树都有一个节点,并且合并完会变成一个节点,且把它的祖先节点也合并,也就是说每次花费 \(\log n\) 的代价合并了 \(\log n\) 个节点,由于最多有 \(n \log n\) 个节点,所以总复杂度就是 \(O(n \log n)\)

CF600E

线段树记录最重的子树。然后合并答案。

现在就只有合并线段树的问题了。

trick

段树合并完后再还原需要额外空间,因此最好一次跑完答案,因此 线段树合并适合离线

实现(CF600E)

#include<bits/stdc++.h>
#define int long long
using namespace std;
const int maxn = 1e5+114;
const int inf = 1e5;
struct Node{
	int ls,rs,val,cnt;// left son right son the anser the cnt 
}tree[maxn * 20];
vector<int> edge[maxn];
int col[maxn];
int ans[maxn];
int root[maxn];
int tot;
inline void add(int u,int v){
	edge[u].push_back(v);
	edge[v].push_back(u);	
}
void pushup(int &cur){
	//cout<<tree[tree[cur].ls].cnt<<" "<<tree[tree[cur].ls].cnt<<'\n';
	if(tree[tree[cur].ls].cnt<tree[tree[cur].rs].cnt){
		tree[cur].cnt=tree[tree[cur].rs].cnt;
		tree[cur].val=tree[tree[cur].rs].val;
	}
	else if(tree[tree[cur].rs].cnt<tree[tree[cur].ls].cnt){
		tree[cur].cnt=tree[tree[cur].ls].cnt;
		tree[cur].val=tree[tree[cur].ls].val;
	}
	else{
		tree[cur].cnt=tree[tree[cur].ls].cnt;
		tree[cur].val=tree[tree[cur].ls].val+tree[tree[cur].rs].val;
	}
}
void addtag(int &cur,int lt,int rt,int l,int r,int v){
	if(lt>r||rt<l) return ;
	if(cur==0){
		cur=++tot;
	}
	if(lt==rt){
		tree[cur].cnt+=v;
		tree[cur].val=lt;
		return ;
	}
	int mid = (lt+rt)/2;
	addtag(tree[cur].ls,lt,mid,l,r,v);
	addtag(tree[cur].rs,mid+1,rt,l,r,v);
	pushup(cur);
}
int merge(int a,int b,int l,int r){
	if(a==0||b==0) return a+b;
	if(l==r){
		tree[a].cnt+=tree[b].cnt;
		tree[a].val=l;
		return a;
	}
	int mid=(l+r)/2;
	tree[a].ls=merge(tree[a].ls,tree[b].ls,l,mid);
	tree[a].rs=merge(tree[a].rs,tree[b].rs,mid+1,r);
	pushup(a);
	return a;
}
void dfs(int now,int fa){
	for(int nxt:edge[now]){
		if(nxt==fa) continue;
		dfs(nxt,now);
		root[now]=merge(root[now],root[nxt],1,inf);
	}
	pushup(root[now]);
	addtag(root[now],1,inf,col[now],col[now],1);
	ans[now]=tree[root[now]].val;
}
signed main(){
	int n;
	cin>>n;
	for(int i=1;i<=n;i++) cin>>col[i];
	for(int i=2;i<=n;i++){
		int u,v;
		cin>>u>>v;
		add(u,v);
	}
	dfs(1,0);
	for(int i=1;i<=n;i++){
		cout<<ans[i]<<' ';
	}
}

P4556

首先可以考虑树上差分。

然后显然我们只要处理桶合并的问题。

那么显然就可以线段树合并。

#include<bits/stdc++.h>
using namespace std;
const int inf = 2e5;
int n,q;
const int maxn = 2e5+114;
vector<int> Add[maxn*2],Del[maxn*2];
int ans[maxn];
int tot;
int root[maxn];
int fa[maxn][18];
int depth[maxn];
int lg[maxn];
vector<int> edge[maxn];
struct Node{
	int ls,rs,val,cnt;// left son right son the anser the cnt 
}tree[maxn * 20];
void pushup(int &cur){
	//cout<<tree[tree[cur].ls].cnt<<" "<<tree[tree[cur].ls].cnt<<'\n';
	if(tree[tree[cur].ls].cnt<tree[tree[cur].rs].cnt){
		tree[cur].cnt=tree[tree[cur].rs].cnt;
		tree[cur].val=tree[tree[cur].rs].val;
	}
	else if(tree[tree[cur].rs].cnt<tree[tree[cur].ls].cnt){
		tree[cur].cnt=tree[tree[cur].ls].cnt;
		tree[cur].val=tree[tree[cur].ls].val;
	}
	else{
		tree[cur].cnt=tree[tree[cur].ls].cnt;
		tree[cur].val=min(tree[tree[cur].ls].val,tree[tree[cur].rs].val);
	}
}
void addtag(int &cur,int lt,int rt,int l,int r,int v){
	if(lt>r||rt<l) return ;
	if(cur==0){
		cur=++tot;
	}
	if(lt==rt){
		tree[cur].cnt+=v;
		tree[cur].val=lt;
		return ;
	}
	int mid = (lt+rt)/2;
	addtag(tree[cur].ls,lt,mid,l,r,v);
	addtag(tree[cur].rs,mid+1,rt,l,r,v);
	pushup(cur);
}
int merge(int a,int b,int l,int r){
	if(a==0||b==0) return a+b;
	if(l==r){
		tree[a].cnt+=tree[b].cnt;
		tree[a].val=l;
		return a;
	}
	int mid=(l+r)/2;
	tree[a].ls=merge(tree[a].ls,tree[b].ls,l,mid);
	tree[a].rs=merge(tree[a].rs,tree[b].rs,mid+1,r);
	pushup(a);
	return a;
}
inline void add(int u,int v){
	edge[u].push_back(v);
	edge[v].push_back(u);
}
inline void dfs1(int now,int fath){
	fa[now][0]=fath;
	depth[now]=depth[fath] + 1;
	for(int i=1;i<=lg[depth[now]];++i)
		fa[now][i] = fa[fa[now][i-1]][i-1];
	for(int nxt:edge[now]){
		if(nxt==fath) continue;
		dfs1(nxt,now);
	}
}
int LCA(int x,int y){
	if(depth[x] < depth[y]) 
		swap(x, y);
	while(depth[x] > depth[y])
		x=fa[x][lg[depth[x]-depth[y]]- 1];
	if(x==y) 
    	return x;
	for(int k=lg[depth[x]]-1; k>=0; --k)
		if(fa[x][k] != fa[y][k])
			x=fa[x][k],y=fa[y][k];
	return fa[x][0];
}
void change(int u,int v,int z){
	//cout<<u<<' '<<v<<' '<<z<<' '<<LCA(u,v)<<'\n';
	Add[u].push_back(z);
	Add[v].push_back(z);
	int w=LCA(u,v);
	Del[w].push_back(z);
	Del[fa[w][0]].push_back(z);
}
void dfs2(int now,int fa){
	for(int nxt:edge[now]){
		if(nxt==fa) continue;
		dfs2(nxt,now);
		root[now]=merge(root[now],root[nxt],1,inf);
	}
	pushup(root[now]);
	for(int c:Add[now]){
		addtag(root[now],1,inf,c,c,1);
	}
	for(int c:Del[now]){
		addtag(root[now],1,inf,c,c,-1);
	}
	ans[now]=tree[root[now]].val;
}
//树上差分打 add & del 标记,合并到某个节点再统一处理
signed main(){
	ios::sync_with_stdio(0);
	cin.tie(0);
	cout.tie(0);
	cin>>n>>q;
	for(int i = 1; i <= n; ++i)
		lg[i]=lg[i-1]+(1<<lg[i-1]==i);
	for(int i=1;i<n;i++){
		int u,v;
		cin>>u>>v;
		add(u,v);
	}
	dfs1(1,0);
	for(int i=1;i<=q;i++){
		int u,v,z;
		cin>>u>>v>>z;
		change(u,v,z);
	}
	dfs2(1,0);
	for(int i=1;i<=n;i++) cout<<ans[i]<<'\n';
}

P3521

考虑怎么求逆序对。

我们可以在合并的时候用 \(A_{1,mid} \times B_{mid+1,r}\) 来求出逆序对。

那么接下来就是一个板子了。

#include<bits/stdc++.h>
#define int long long
using namespace std;
const int maxn = 2e5+114;
const int inf = 1e5;
struct Node{
    int ls,rs,val;// left son right son the anser the cnt 
}tree[maxn * 20];
int u,v,ans;
int tot;
int n;
void pushup(int &cur){
    //cout<<tree[tree[cur].ls].cnt<<" "<<tree[tree[cur].ls].cnt<<'\n';
    tree[cur].val=tree[tree[cur].ls].val+tree[tree[cur].rs].val;
}
int update(int l,int r,int val){
	int pos=++tot;
	tree[pos].val++;
	if(l==r) return pos;
	int mid=(l+r)>>1;
	if(val<=mid) tree[pos].ls=update(l,mid,val);
	else tree[pos].rs=update(mid+1,r,val);
	return pos;
}
int merge(int a,int b,int l,int r){
    if(a==0||b==0) return a+b;
    if(l==r){
        tree[a].val+=tree[b].val;
        return a;
    }
    int mid=(l+r)/2;
    u+=tree[tree[a].rs].val*tree[tree[b].ls].val;
    v+=tree[tree[a].ls].val*tree[tree[b].rs].val;
    tree[a].ls=merge(tree[a].ls,tree[b].ls,l,mid);
    tree[a].rs=merge(tree[a].rs,tree[b].rs,mid+1,r);
    pushup(a);
    return a;
}
int dfs(){
	int root,U;
	cin>>U;
	if(U==0){
		int lt=dfs(),rt=dfs();
		u=0,v=0;
		root=merge(lt,rt,1,n);
		ans+=min(u,v);
		//cout<<u<<' '<<v<<'\n';
		return root;
	}
	else{
    	root=update(1,n,U);
    	return root;
	}
}
signed main(){
    cin>>n;
    dfs();
    cout<<ans;
}

P3605

只要维护子树最大值就可以了,用线段树合并即可。

#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e6+114;
vector<int> edge[maxn];
int val[maxn];
int ans[maxn];
int root[maxn];
const int inf = 1e9+10;
int n,tot;
struct Node{
	int ls,rs,sum;// left son right son the anser the cnt 
}tree[maxn * 20];
void pushup(int &cur){
    tree[cur].sum=tree[tree[cur].ls].sum+tree[tree[cur].rs].sum;
}
int ask(int &cur,int lt,int rt,int l,int r){
    if(rt<l||r<lt){
        return 0;
    }
    if(l<=lt&&rt<=r){
        return tree[cur].sum;
    }
    int mid=(lt+rt)/2;
    int sum=0;
    sum+=ask(tree[cur].ls,lt,mid,l,r);
    sum+=ask(tree[cur].rs,mid+1,rt,l,r);
    return sum;
}
void addtag(int &cur,int lt,int rt,int l,int r,int v){
	if(lt>r||rt<l) return ;
	if(cur==0){
		cur=++tot;
	}
	if(lt==rt){
		tree[cur].sum+=v;
		return ;
	}
	int mid = (lt+rt)/2;
	addtag(tree[cur].ls,lt,mid,l,r,v);
	addtag(tree[cur].rs,mid+1,rt,l,r,v);
	pushup(cur);
}
int merge(int a,int b,int l,int r){
	if(a==0||b==0) return a+b;
	if(l==r){
		tree[a].sum+=tree[b].sum;
		return a;
	}
	int mid=(l+r)/2;
	tree[a].ls=merge(tree[a].ls,tree[b].ls,l,mid);
	tree[a].rs=merge(tree[a].rs,tree[b].rs,mid+1,r);
	pushup(a);
	return a;
}
void dfs(int u,int fa){
    for(int v:edge[u]){
        if(v==fa) continue;
        dfs(v,u);
        root[u]=merge(root[u],root[v],1,inf);
    }
    ans[u]=ask(root[u],1,inf,val[u]+1,inf);
    addtag(root[u],1,inf,val[u],val[u],1);
}
int main(){
    cin>>n;
    for(int i=1;i<=n;i++) cin>>val[i];
    for(int i=2;i<=n;i++){
        int x;
        cin>>x;
        edge[x].push_back(i);
    }
    dfs(1,0);
    for(int i=1;i<=n;i++) cout<<ans[i]<<'\n';
}

CF208E

本质上只需要维护 \(k\) 级祖先以及子树内深度为 \(x\) 的节点数量。

前者离线 dfs,后者线段树合并(下标表示深度)即可。

#include<bits/stdc++.h>
using namespace std;
const int N = 1e5+114;
int num,a[N];
int dep[N];
vector<int> edge[N];
int root[N];
int ans[N];
vector< pair<int,int> > ask[N];//编号 :深度 
vector<int> wyb;
int in[N];
struct Node{
	int ls,rs;
	int val;
}tree[N * 20];
int tot;
int n,q;
void pushup(int x){
	tree[x].val=tree[tree[x].ls].val+tree[tree[x].rs].val;
}
void update(int &x,int l,int r,int pos,int v){
	if(l>pos||r<pos) return ;
	if(x==0){
		x=++tot;
	}
	if(l==r&&l==pos){
		tree[x].val+=v;
		return ;
	}
	int mid=(l+r)/2;
	update(tree[x].ls,l,mid,pos,v);
	update(tree[x].rs,mid+1,r,pos,v);
	pushup(x);
}
int query(int &x,int l,int r,int pos){
	if(l>pos||r<pos){
		return 0; 
	}
	if(l==r&&l==pos){
		return tree[x].val;
	}
	int mid=(l+r)/2,sum=0;
	sum+=query(tree[x].ls,l,mid,pos);
	sum+=query(tree[x].rs,mid+1,r,pos);
	return sum;
}
int merge(int a,int b,int l,int r){
	//cout<<a<<' '<<b<<' '<<l<<' '<<r<<'\n'; 
	if(a==0||b==0){
		//cout<<a<<' '<<b<<'\n';
		return a+b; 
	}
	if(l==r){
		tree[a].val+=tree[b].val;
		//cout<<tree[a].chifan.size()<<'\n'; 
		tree[b].val=0;
		return a;
	}
	int mid=(l+r)/2;
	//cout<<tree[a].rs<<' '<<tree[b].rs<<'\n';
	tree[a].ls=merge(tree[a].ls,tree[b].ls,l,mid);
	tree[a].rs=merge(tree[a].rs,tree[b].rs,mid+1,r);
	pushup(a);
	return a; 
}
vector< pair<int,int> > ASK[N];//编号 :深度 
void dfs(int cur,int fa){
	wyb.push_back(cur);
	dep[cur]=dep[fa]+1;
	for(int u:edge[cur]){
		if(u==fa) continue;
		dfs(u,cur);
		//cout<<cur<<' '<<root[cur]<<'\n'; 
		root[cur]=merge(root[cur],root[u],1,n);
	}
	update(root[cur],1,n,dep[cur],1);
	for(int i=0;i<ask[cur].size();i++){
		int k=ask[cur][i].second;
		if(k>=wyb.size()) continue;
		int kfa=wyb[wyb.size()-k-1];
		//cout<<cur<<' '<<k<<' '<<kfa<<' '<<dep[kfa]+k<<' '<<query(root[kfa],1,n,dep[kfa]+k)<<'\n';
		ASK[kfa].push_back(make_pair(ask[cur][i].first,dep[kfa]+k));
		/*
		if(dep[cur]+ask[cur][i].second<=n){
			//cout<<ask[cur][i].first<<' '<<query(root[cur],1,n,dep[cur]+ask[cur][i].second)<<'\n';
			ans[ask[cur][i].first]=query(root[cur],1,n,dep[cur]+ask[cur][i].second);
		}
		*/
	}
	for(int i=0;i<ASK[cur].size();i++){
		//cout<<cur<<' '<<ASK[cur][i].second<<' '<<query(root[cur],1,n,ASK[cur][i].second)<<'\n';
		ans[ASK[cur][i].first]=query(root[cur],1,n,ASK[cur][i].second)-1;
	}
	wyb.pop_back(); 
}
inline void add(int u,int v){
	edge[u].push_back(v);
	edge[v].push_back(u); 
}
int main(){
	ios::sync_with_stdio(0);
	cin.tie(0);
	cout.tie(0);
	cin>>n;
	for(int i=1;i<=n;i++){
		int x;
		cin>>x;
		if(x==0) continue;
		in[i]++;
		add(x,i);
	}
	cin>>q;
	for(int i=1;i<=q;i++){
		int x,y;
		cin>>x>>y; 
		ask[x].push_back(make_pair(i,y)); 
	} 
	for(int i=1;i<=n;i++){
		if(in[i]==0){
			//cout<<i<<'\n';
			dfs(i,0); 
		}
	}
	for(int i=1;i<=q;i++){
		cout<<ans[i]<<' ';
	}
	
}

P3224

注意到所有连通块其实是在按树形结构合并。

所以对于每个连通块开一棵线段树。

合并操作就去合并两颗线段树。

查询操作就查询第 \(k\) 大即可。

#include<bits/stdc++.h>
#define int long long
using namespace std;
const int maxn = 1e5+114;
const int inf = 1e5;
struct Node{
    int ls,rs,val,cnt;// left son right son the anser the cnt 
}tree[maxn * 20];
vector<int> edge[maxn];
int fa[maxn];
int found(int x){
	if(fa[x]==x) return x;
	else return fa[x]=found(fa[x]);
}
int n,q;
int root[maxn];
int mp[maxn];
int tot;
void pushup(int &cur){
    //cout<<tree[tree[cur].ls].cnt<<" "<<tree[tree[cur].ls].cnt<<'\n';
    tree[cur].val=tree[tree[cur].ls].val+tree[tree[cur].rs].val;
}
int kth(int &cur,int l,int r,int k)
{
	if(l==r) return l;
    int mid=(l+r)/2;
    if(tree[tree[cur].ls].val>=k){
    	return kth(tree[cur].ls,l,mid,k);
	}
	else{
		return kth(tree[cur].rs,mid+1,r,k-tree[tree[cur].ls].val);
	}
}
void addtag(int &cur,int lt,int rt,int l,int r,int v){
    if(lt>r||rt<l) return ;
    if(cur==0){
        cur=++tot;
    }
    if(lt==rt){
        tree[cur].val+=v;
        return ;
    }
    int mid = (lt+rt)/2;
    addtag(tree[cur].ls,lt,mid,l,r,v);
    addtag(tree[cur].rs,mid+1,rt,l,r,v);
    pushup(cur);
}
int merge(int a,int b,int l,int r){
    if(a==0||b==0) return a+b;
    if(l==r){
        tree[a].val+=tree[b].val;
        return a;
    }
    int mid=(l+r)/2;
    tree[a].ls=merge(tree[a].ls,tree[b].ls,l,mid);
    tree[a].rs=merge(tree[a].rs,tree[b].rs,mid+1,r);
    pushup(a);
    return a;
}
int m;
signed main(){
	ios::sync_with_stdio(0);
	cin.tie(0);
	cout.tie(0);
    cin>>n>>m;
    for(int i=1;i<=n;i++){
    	fa[i]=i;
    	root[i]=++tot;
    	int u;
    	cin>>u;
    	mp[u]=i;
    	addtag(root[i],1,n,u,u,1);
	}
	for(int i=1;i<=m;i++){
		int x,y;
		cin>>x>>y;
		x=found(x),y=found(y);
		root[x]=merge(root[x],root[y],1,n);
		fa[y]=x;
	}
	cin>>q;
	for(int i=1;i<=q;i++){
		char op;
		cin>>op;
		if(op=='B'){
			int x,y;
			cin>>x>>y;
			x=found(x),y=found(y);
			root[x]=merge(root[x],root[y],1,n);
			fa[y]=x;
		}
		else{
			int x,k;
			cin>>x>>k;
			x=found(x);
			if(k>tree[root[x]].val){
				cout<<"-1\n";
			}
			else{
				cout<<mp[kth(root[x],1,n,k)]<<'\n';
			}
		}
	}
}

P5384

本质上和 CF208E 没有区别。

#include<bits/stdc++.h>
using namespace std;
const int N = 1e6+114;
int num,a[N];
int dep[N];
vector<int> edge[N];
int root[N];
int ans[N];
vector< pair<int,int> > ask[N];//编号 :深度 
vector<int> wyb;
int in[N];
struct Node{
	int ls,rs;
	int val;
}tree[N * 4];
int tot;
int n,q;
stack<int> ioi;
void pushup(int x){
	tree[x].val=tree[tree[x].ls].val+tree[tree[x].rs].val;
}
void update(int &x,int l,int r,int pos,int v){
	if(l>pos||r<pos) return ;
	if(x==0){
        if(ioi.size()==0)
		    x=++tot;
        else{
            x=ioi.top();
            ioi.pop();
        }
	}
	if(l==r&&l==pos){
		tree[x].val+=v;
		return ;
	}
	int mid=(l+r)/2;
	update(tree[x].ls,l,mid,pos,v);
	update(tree[x].rs,mid+1,r,pos,v);
	pushup(x);
}
int query(int &x,int l,int r,int pos){
	if(l>pos||r<pos){
		return 0; 
	}
	if(l==r&&l==pos){
		return tree[x].val;
	}
	int mid=(l+r)/2,sum=0;
	sum+=query(tree[x].ls,l,mid,pos);
	sum+=query(tree[x].rs,mid+1,r,pos);
	return sum;
}
int merge(int a,int b,int l,int r){
	//cout<<a<<' '<<b<<' '<<l<<' '<<r<<'\n'; 
	if(a==0||b==0){
		//cout<<a<<' '<<b<<'\n';
		return a+b; 
	}
	if(l==r){
		tree[a].val+=tree[b].val;
		//cout<<tree[a].chifan.size()<<'\n'; 
		tree[b].val=0;
        //ioi.push(b);
		return a;
	}
	int mid=(l+r)/2;
	//cout<<tree[a].rs<<' '<<tree[b].rs<<'\n';
	tree[a].ls=merge(tree[a].ls,tree[b].ls,l,mid);
	tree[a].rs=merge(tree[a].rs,tree[b].rs,mid+1,r);
	pushup(a);
    ioi.push(b);
	return a; 
}
vector< pair<int,int> > ASK[N];//编号 :深度 
void dfs(int cur,int fa){
	wyb.push_back(cur);
	dep[cur]=dep[fa]+1;
	for(int u:edge[cur]){
		if(u==fa) continue;
		dfs(u,cur);
		//cout<<cur<<' '<<root[cur]<<'\n'; 
		root[cur]=merge(root[cur],root[u],1,n);
	}
	update(root[cur],1,n,dep[cur],1);
	for(int i=0;i<ask[cur].size();i++){
		int k=ask[cur][i].second;
		if(k>=wyb.size()) continue;
		int kfa=wyb[wyb.size()-k-1];
		//cout<<cur<<' '<<k<<' '<<kfa<<' '<<dep[kfa]+k<<' '<<query(root[kfa],1,n,dep[kfa]+k)<<'\n';
		ASK[kfa].push_back(make_pair(ask[cur][i].first,dep[kfa]+k));
		/*
		if(dep[cur]+ask[cur][i].second<=n){
			//cout<<ask[cur][i].first<<' '<<query(root[cur],1,n,dep[cur]+ask[cur][i].second)<<'\n';
			ans[ask[cur][i].first]=query(root[cur],1,n,dep[cur]+ask[cur][i].second);
		}
		*/
	}
	for(int i=0;i<ASK[cur].size();i++){
		//cout<<cur<<' '<<ASK[cur][i].second<<' '<<query(root[cur],1,n,ASK[cur][i].second)<<'\n';
		ans[ASK[cur][i].first]=query(root[cur],1,n,ASK[cur][i].second)-1;
	}
	wyb.pop_back(); 
}
inline void add(int u,int v){
	edge[u].push_back(v);
	edge[v].push_back(u); 
}
int main(){
	ios::sync_with_stdio(0);
	cin.tie(0);
	cout.tie(0);
	cin>>n>>q;
	for(int i=2;i<=n;i++){
		int x;
		cin>>x;
		if(x==0) continue;
		in[i]++;
		add(x,i);
	}

	for(int i=1;i<=q;i++){
		int x,y;
		cin>>x>>y; 
		ask[x].push_back(make_pair(i,y)); 
	} 
	for(int i=1;i<=n;i++){
		if(in[i]==0){
			//cout<<i<<'\n';
			dfs(i,0); 
		}
	}
	for(int i=1;i<=q;i++){
		cout<<ans[i]<<' ';
	}
	
}

原文链接:https://www.cnblogs.com/chifan-duck/p/17292464.html

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:动态开点线段树&线段树合并学习笔记 - Python技术站

(0)
上一篇 2023年4月17日
下一篇 2023年4月17日

相关文章

  • Python3.6基于正则实现的计算器示例【无优化简单注释版】

    Python3.6基于正则实现的计算器示例【无优化简单注释版】攻略 什么是Python3.6基于正则实现的计算器示例? Python3.6基于正则实现的计算器示例是一个简单的计算器程序,它使用Python3.6的正则表达式模块re实现了基本的四则运算功能。该示例程序可以帮助初学者了解Python3.6正则表达式的基本用法,并学习如何使用Python3.6实现…

    python 2023年5月14日
    00
  • Java数据结构之链表的增删查改详解

    Java数据结构之链表的增删查改详解 简介 链表是非常常用的数据结构之一,它将数据储存在一个个结点中,每个结点存储了它所代表的数据和它下一个结点的指针,通过这些指针链接在一起,形成了一条链。 新建链表 // 定义链表中元素的结构 class ListNode { int val; ListNode next; ListNode(int x) { val = …

    数据结构 2023年5月17日
    00
  • Python实现字符串匹配算法代码示例

    下面是详细讲解“Python实现字符串匹配算法代码示例”的完整攻略,包括算法原理、Python实现和两个示例。 算法原理 字符串匹配算法是一种在一个字符串中查找一个子串的算法。常见的字符串匹配算法有暴力匹配算法、KMP算法、Boyer-Moore算法等。其中,KMP算法是一种比较高效的字符串匹配算法,其主要思想是利用已经匹配过的信息,尽量减少匹配次数。具体实…

    python 2023年5月14日
    00
  • MySQL索引原理详解

    MySQL索引原理详解 MySQL索引是一种数据结构,用于帮助查询语句更快地访问到所需的数据,提高数据库查询效率。本文将详细讲解MySQL索引的原理、类型及如何创建索引。 索引原理 B树 MySQL索引底层数据结构主要采用B树,B树是一种多路平衡查找树。B树的每一个节点可以存储多个键值,每个节点的子节点个数也可以大于2,从而使得查询效率更高。 索引分类 My…

    数据结构 2023年5月17日
    00
  • python算法与数据结构之单链表的实现代码

    下面是详细讲解“Python算法与数据结构之单链表的实现代码”的完整攻略,包括节点类的定义、链表类的定义、节点的插入、删除和查找等操作,以及两个示例说明。 节点类的定义 节点类表示单链表的节点,包括节点值和下一个节点指针。以下是Python实现节点类的示例代码: class ListNode: def __init__(self, val=0, next=N…

    python 2023年5月14日
    00
  • Redis数据结构之链表与字典的使用

    Redis是一个开源、基于内存的数据结构存储系统。Redis支持多种数据类型,包括字符串、整数、浮点数、列表、哈希表、集合、有序集合等。本文将详细介绍Redis数据结构之链表与字典的使用。 链表 链表是Redis中常用的数据结构之一,主要用于存储有序的元素列表。链表中的每个元素都包含了一个指向前驱元素和后继元素的指针,这种结构可以方便地实现链表的插入、删除和…

    数据结构 2023年5月17日
    00
  • 手撕HashMap(二)

    这里再补充几个手撕HashMap的方法 1、remove() remove 方法参数值应该是键值对的键的值,当传入键值对的键的时候,remove 方法会删除对应的键值对 需要利用我们自己先前创建的 hashcodeList 来实现,hashcodeList 存入了所有被使用的 hashcode 值,方便后续的操作 在 put() 中,当添加新的键值对时,就会…

    算法与数据结构 2023年4月18日
    00
  • Java数据结构之插入排序与希尔排序

    Java数据结构之插入排序与希尔排序 插入排序 插入排序是一种简单而有效的排序算法。它的基本思想是将一个元素插入已经排好序的部分中。插入排序的过程可以用以下伪代码表示: for i=1 to length-1 j = i while j > 0 and array[j-1] > array[j] swap array[j] and array[j…

    数据结构 2023年5月17日
    00
合作推广
合作推广
分享本页
返回顶部