Python 实现训练集、测试集随机划分

那么让我们来讲解一下“Python 实现训练集、测试集随机划分”的完整攻略吧。

什么是训练集与测试集

在机器学习领域,我们经常会用到训练集和测试集。训练集是用来训练机器学习算法模型的数据集,而测试集则是用来验证模型的准确性和泛化能力的数据集。

通常情况下,训练集和测试集是从同一个数据集中划分而来的,其中训练集占据了大部分数据,用来训练模型;而测试集则是用来检验模型的精确度和泛化能力。

训练集和测试集的划分方法

在Python中,我们可以使用sklearn库来进行数据集的划分,sklearn库中的train_test_split()函数可以帮助我们将数据集划分为训练集和测试集。train_test_split()函数主要包含以下四个参数:

  • arrays

需要划分的数据集,可以是NumPy数组,Pandas的 DataFrame或Series,Python 的 list等。

  • test_size

测试集大小的比例。测试集大小可以是浮点数(0到1之间),表示测试集所占的比例;也可以是整数,表示测试集所包含的样本数量。例如,test_size=0.2表示“划分出20%的测试集”;test_size=50表示“划分出50个样本的测试集”。

  • train_size

训练集大小的比例。如果设定了test_size,则该参数会自动设置,但是如果没有设定test_size,则需要设置该参数。

  • random_state

随机种子,默认为None,如果指定了该参数值,则每次运行该代码时,生成的随机结果都是一致的。

示例一:将数据集随机划分为训练集和测试集

现在,我们来进行一个数据集划分的示例。首先,我们需要导入相关的库:

import numpy as np
from sklearn.model_selection import train_test_split

接下来,我们生成一个包含100个元素的随机数组:

x = np.random.rand(100)

通过使用train_test_split()函数,我们可以将这个随机数组划分为训练集和测试集。假设我们希望将数据集划分为80%的训练集和20%的测试集,代码如下所示:

x_train, x_test = train_test_split(x, test_size=0.2)

这里,我们不需要指定train_size参数,因为它会默认设置为测试集之外的其余数据。上述代码会将数据集随机划分,并将划分结果分别保存在x_train和x_test两个变量中。

示例二:将数据集和标签随机划分为训练集和测试集

除了划分数据集之外,有时候我们还需要将标签随机划分为训练集和测试集。这里我们假设我们有一个包含100个样本和对应标签的数据集,代码如下所示:

x = np.random.rand(100, 5) # 100个样本,每个样本有5个特征
y = np.random.randint(2, size=100) # 100个标签,取值为0或1

我们可以使用train_test_split()函数将这个数据集和标签随机划分为训练集和测试集。我们依然希望将数据集划分为80%的训练集和20%的测试集,代码如下所示:

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2)

这里,除了数据集之外,我们还需要传入y参数,以保证标签的随机划分。上述代码会将x和y随机划分,并将划分结果分别保存在x_train、x_test、y_train、y_test四个变量中。

总结

综上所述,我们可以使用Python的sklearn库中的train_test_split()函数来随机划分数据集和标签,划分后的数据集可以用于机器学习算法的训练和测试。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Python 实现训练集、测试集随机划分 - Python技术站

(0)
上一篇 2023年5月18日
下一篇 2023年5月18日

相关文章

  • 深度学习-TensorFlow2.0笔记(一)

     1.1 什么是Tensor?Tensor的数据类型     Tensor是张量的意思,在TensorFlow中张量可以是标量(scalar)、向量(vector)、矩阵(matrix)、高维度张量(rank>2),像Numpy里的数组就不属于Tensor。TensorFlow里的常用的数据类型有tf.int32、tf.float32、tf.doubl…

    2023年4月8日
    00
  • tensorflow 基础学习七:模型的持久化

    tf.train.Saver类的使用 保存模型: import tensorflow as tf v1=tf.Variable(tf.constant(1.0,shape=[1]),name=’v1′) v2=tf.Variable(tf.constant(2.0,shape=[1]),name=’v2′) result=v1+v2 init_op=tf.g…

    tensorflow 2023年4月6日
    00
  • 使用tensorflow实现矩阵分解方式

    矩阵分解是一种常见的数据分析技术,可以将一个大矩阵分解成多个小矩阵,从而简化计算和存储。在 TensorFlow 中,我们可以使用 tf.linalg.svd() 函数来实现矩阵分解。 示例1:使用 tf.linalg.svd() 函数实现矩阵分解 import tensorflow as tf # 定义一个矩阵 matrix = tf.constant([…

    tensorflow 2023年5月16日
    00
  • TensorFlow-GPU、Win10、m1050Ti、anaconda、VSCODE,新手排坑

    直接放精简版的路线: 0,浏览tf官方网站的指南:https://www.tensorflow.org/install/install_windows 1,知道怎么部署anaconda最新版和vscode的连接 2,pip安装tf-gpu最新版 3,NVIDIA官网下载tf官方指南上对应的cuda版本(2018年3月,现在是cuda 9.0) 4,NVIDI…

    tensorflow 2023年4月6日
    00
  • TensorFlow函数:tf.random_shuffle

    random_shuffle( value, seed=None, name=None ) 定义在:tensorflow/python/ops/random_ops.py. 请参阅指南:生成常量,序列和随机值>随机张量 随机地将张量沿其第一维度打乱. 张量沿着维度0被重新打乱,使得每个 value[j] 被映射到唯一一个 output[i].例如,一个…

    tensorflow 2023年4月6日
    00
  • TensorFlow-正弦函数拟合

      MNIST的代码还是有点复杂,一大半内容全在搞数据,看了半天全是一滩烂泥。最关键的是最后输出就是一个accuracy,我根本就不关心你准确率是0.98还是0.99好吗?我就想看到我手写一个5,你程序给我输出一个5,就这么简单。   粗略看了文档和网上找了些资料,感觉上吧,倒是有点像Verilog。描述图结构的时候每句话定义一个tensor,它的值由ten…

    2023年4月8日
    00
  • tensorflow 2.0 学习 (十五)自编码器 FashionMNIST数据集图像重建与生成

    这里就不更新上一文中LSTM情感分类问题了, 它只是网络结构中函数,从而提高准确率。 这一篇更新自编码器的图像重建处理, 网络结构如下: 代码如下: 1 import os 2 import numpy as np 3 import tensorflow as tf 4 from tensorflow import keras 5 from tensorfl…

    2023年4月8日
    00
  • TensorFLow 变量命名空间实例

    TensorFlow 变量命名空间实例 在TensorFlow中,我们可以使用变量命名空间来管理变量,以便更好地组织和管理TensorFlow模型。本攻略将介绍如何使用变量命名空间,并提供两个示例。 示例1:使用变量命名空间管理变量 以下是示例步骤: 导入必要的库。 python import tensorflow as tf 定义变量命名空间。 pytho…

    tensorflow 2023年5月15日
    00
合作推广
合作推广
分享本页
返回顶部