下面是详细的“java 使用ElasticSearch完成百万级数据查询附近的人功能”的攻略:
一、准备工作
1. 安装Elasticsearch
首先需要在本地安装Elasticsearch,可以到官方网站下载并安装。也可以使用Docker进行安装。
2. 安装Elasticsearch客户端
在Java代码中使用Elasticsearch,需要引入Elasticsearch客户端的依赖。可以使用Maven在pom.xml文件中添加以下依赖:
<dependency>
<groupId>org.elasticsearch</groupId>
<artifactId>elasticsearch</artifactId>
<version>7.10.0</version>
</dependency>
3. 准备测试数据
为了测试百万级数据的查询,需要准备一份大规模的测试数据。可以使用Mockaroo等在线工具生成大规模的随机数据,并将其保存在文件中。
二、创建索引
在Elasticsearch中,数据存储在索引中。因此,需要先创建一个索引来存储测试数据。可以使用Elasticsearch客户端的API来创建索引。下面是示例代码:
import org.elasticsearch.action.admin.indices.create.CreateIndexRequest;
import org.elasticsearch.action.admin.indices.create.CreateIndexResponse;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.common.settings.Settings;
import org.elasticsearch.common.xcontent.XContentType;
import org.elasticsearch.index.mapper.ObjectMapper;
import org.elasticsearch.index.mapper.ObjectMapper.Builder;
import org.elasticsearch.index.mapper.ObjectMapper.StaticBuilderFactory;
import org.elasticsearch.index.mapper.ObjectMapper.BuilderFactory;
import org.elasticsearch.index.mapper.ParseContext;
import org.elasticsearch.index.mapper.ParsedDocument;
import org.elasticsearch.index.mapper.ParsedDocumentBuilder;
import org.elasticsearch.index.mapper.TypeParser;
import org.elasticsearch.index.mapper.core.CompletionFieldMapper;
import org.elasticsearch.index.mapper.core.DateFieldMapper;
import org.elasticsearch.index.mapper.core.StringFieldMapper;
import org.elasticsearch.index.mapper.core.TokenCountFieldMapper;
import org.elasticsearch.index.mapper.geo.GeoPointFieldMapper;
import java.io.IOException;
import java.util.HashMap;
import java.util.Map;
public class IndexCreator {
private RestHighLevelClient client;
private String indexName = "test_data";
public IndexCreator(RestHighLevelClient client) {
this.client = client;
}
public void createIndex() throws IOException {
CreateIndexRequest request = new CreateIndexRequest(indexName);
request.settings(Settings.builder()
.put("index.number_of_shards", 1)
.put("index.number_of_replicas", 0)
);
Map<String, Object> mapping = new HashMap<>();
Map<String, Object> properties = new HashMap<>();
properties.put("id", StringFieldMapper.builder("id").build());
properties.put("name", StringFieldMapper.builder("name").build());
properties.put("location", GeoPointFieldMapper.builder("location").build());
properties.put("address", StringFieldMapper.builder("address").build());
mapping.put("properties", properties);
request.mapping(mapping);
CreateIndexResponse response = client.indices().create(request, RequestOptions.DEFAULT);
System.out.println(response);
}
}
上述代码中,创建了一个名为“test_data”的索引,指定了其数据为GeoPoint类型。
三、导入数据
索引创建完成之后,需要将测试数据导入到其对应的索引中。可以使用Elasticsearch客户端的API来完成数据的导入。下面是示例代码:
import org.elasticsearch.action.bulk.BulkRequest;
import org.elasticsearch.action.bulk.BulkResponse;
import org.elasticsearch.action.index.IndexRequest;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.common.xcontent.XContentType;
import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;
public class DataImporter {
private RestHighLevelClient client;
private String indexName = "test_data";
public DataImporter(RestHighLevelClient client) {
this.client = client;
}
public void importData() throws IOException {
BulkRequest bulkRequest = new BulkRequest();
File file = new File("test_data.json");
BufferedReader reader = new BufferedReader(new FileReader(file));
String line;
while ((line = reader.readLine()) != null) {
bulkRequest.add(new IndexRequest(indexName).source(line, XContentType.JSON));
}
BulkResponse bulkResponse = client.bulk(bulkRequest, RequestOptions.DEFAULT);
System.out.println(bulkResponse);
}
}
上述代码中,读取了以JSON格式保存的测试数据,并使用Bulk API将其导入到“test_data”索引中。
四、查询附近的人
当索引和测试数据导入完成后,就可以开始对其进行查询了。这里我们使用Geo查询来查询附近的人。下面是示例代码:
import org.elasticsearch.action.search.SearchRequest;
import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.common.geo.GeoDistance;
import org.elasticsearch.common.geo.GeoPoint;
import org.elasticsearch.common.unit.DistanceUnit;
import org.elasticsearch.index.query.QueryBuilders;
import org.elasticsearch.search.builder.SearchSourceBuilder;
public class NearbySearcher {
private RestHighLevelClient client;
private String indexName = "test_data";
public NearbySearcher(RestHighLevelClient client) {
this.client = client;
}
public void searchNearby() throws IOException {
SearchRequest searchRequest = new SearchRequest(indexName);
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
GeoPoint location = new GeoPoint(39.9289, 116.3883);
searchSourceBuilder.query(QueryBuilders.geoDistanceQuery("location")
.point(location.getLat(), location.getLon())
.distance(1, DistanceUnit.KILOMETERS)
.geoDistance(GeoDistance.PLANE));
searchRequest.source(searchSourceBuilder);
SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
System.out.println(searchResponse);
}
}
上述代码中,首先指定了查询的中心位置。然后,使用Geo查询查询距离中心位置1公里以内(使用PLANE方式计算距离)的所有文档。最后,使用Search API完成查询操作。
五、示例运行
我们可以将以上三个类用于完成创建索引、导入数据和查询附近的人的相关操作。下面是示例代码:
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.client.indices.IndexTemplatesExistRequest;
import java.io.IOException;
import java.util.logging.Level;
import java.util.logging.Logger;
public class Application {
private static final Logger logger = Logger.getLogger(Application.class.getName());
public static void main(String[] args) {
try (RestHighLevelClient client = new RestClientBuilder().build()) {
IndexCreator indexCreator = new IndexCreator(client);
indexCreator.createIndex();
DataImporter dataImporter = new DataImporter(client);
dataImporter.importData();
NearbySearcher nearbySearcher = new NearbySearcher(client);
nearbySearcher.searchNearby();
} catch (IOException e) {
logger.log(Level.SEVERE, e.getMessage(), e);
}
}
}
上述代码中,我们使用了RestClientBuilder创建了一个RestHighLevelClient,并分别用IndexCreator,DataImporter和NearbySearcher进行创建索引、导入数据和查询附近的人的操作。运行代码,即可得到查询结果。
六、总结
以上便是“java 使用ElasticSearch完成百万级数据查询附近的人功能”的完整攻略。在实际生产环境中,还需要关注Elasticsearch的性能调优、错误处理等内容。
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:java 使用ElasticSearch完成百万级数据查询附近的人功能 - Python技术站