用Pytorch训练CNN(数据集MNIST,使用GPU的方法)

以下是使用PyTorch训练CNN(数据集MNIST,使用GPU的方法)的完整攻略。

步骤一:导入必要的库

首先,我们需要导入必要的库,包括PyTorch、torchvision、numpy和matplotlib等。

import torch
import torchvision
import numpy as np
import matplotlib.pyplot as plt

步骤二:加载数据集

接下来,我们需要加载MNIST数据集。可以使用torchvision中的datasets模块来加载数据集。

train_dataset = torchvision.datasets.MNIST(root='./data', train=True, transform=torchvision.transforms.ToTensor(), download=True)
test_dataset = torchvision.datasets.MNIST(root='./data', train=False, transform=torchvision.transforms.ToTensor(), download=True)

步骤三:定义模型

我们使用一个简单的卷积神经网络来实现手写数字识别。定义模型的代码如下:

class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = torch.nn.Conv2d(1, 32, kernel_size=5, padding=2)
        self.conv2 = torch.nn.Conv2d(32, 64, kernel_size=5, padding=2)
        self.fc1 = torch.nn.Linear(7 * 7 * 64, 1024)
        self.fc2 = torch.nn.Linear(1024, 10)

    def forward(self, x):
        x = torch.nn.functional.relu(self.conv1(x))
        x = torch.nn.functional.max_pool2d(x, 2)
        x = torch.nn.functional.relu(self.conv2(x))
        x = torch.nn.functional.max_pool2d(x, 2)
        x = x.view(-1, 7 * 7 * 64)
        x = torch.nn.functional.relu(self.fc1(x))
        x = torch.nn.functional.dropout(x, training=self.training)
        x = self.fc2(x)
        return torch.nn.functional.log_softmax(x, dim=1)

model = Net()

步骤四:定义损失函数和优化器

我们使用交叉熵损失函数和随机梯度下降优化器来训练模型。

criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.5)

步骤五:将模型和数据移动到GPU上

我们需要将模型和数据移动到GPU上进行训练。

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)

步骤六:训练模型

接下来,我们使用训练集对模型进行训练。

train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)

for epoch in range(10):
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = criterion(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % 100 == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))

步骤七:测试模型

最后,我们使用测试集对模型进行测试。

test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=1000, shuffle=True)

with torch.no_grad():
    correct = 0
    total = 0
    for data, target in test_loader:
        data, target = data.to(device), target.to(device)
        output = model(data)
        _, predicted = torch.max(output.data, 1)
        total += target.size(0)
        correct += (predicted == target).sum().item()

    print('Accuracy of the network on the 10000 test images: %d %%' % (
        100 * correct / total))

上面的代码实现了使用PyTorch训练CNN(数据集MNIST,使用GPU的方法)。下面是两个示例:

示例一:显示数据集中的张图片

image, label = train_dataset[0]
plt.imshow(image.squeeze().numpy(), cmap='gray')
plt.title('Label: %d' % label)
plt.show()

示例二:显示模型的预测结果

image, label = test_dataset[0]
image = image.to(device)
output = model(image.unsqueeze(0))
_, predicted = torch.max(output.data, 1)
plt.imshow(image.cpu().squeeze().numpy(), cmap='gray')
plt.title('Predicted: %d, Actual: %d' % (predicted.item(), label))
plt.show()

上面的代码分别显示了数据集中的一张图片和模型的预测结果。

总结:以上就是使用PyTorch训练CNN(数据集MNIST,使用GPU的方法)的完整攻略,包括数据集的加载、模型的定义、损失函数和优化器的定义、将模型和数据移动到GPU上、模型的训练和测试,以及两个示例的展示。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:用Pytorch训练CNN(数据集MNIST,使用GPU的方法) - Python技术站

(0)
上一篇 2023年5月14日
下一篇 2023年5月14日

相关文章

  • Python如何生成指定区间中的随机数

    在Python中,可以使用random模块来生成指定区间中的随机数。random模块提供了许多函数来生成不同类型的随机数。本文将详细介绍如何使用random块生成指定间中的随机数,并提供两个示例。 生成指定区间的整数随机数 要生成指定区的整数随机数,可以使用randint()函数。randint()函数接受两个参数,表示随机数的范围。例如,要生成1到10之间…

    python 2023年5月14日
    00
  • python之cv2与图像的载入、显示和保存实例

    以下是关于“python之cv2与图像的载入、显示和保存实例”的完整攻略。 背景 在Python中,cv2是一个常用的图像处理库,可以用于图像的载入、显示和保存。本攻略将详细介绍cv2库的使用方法。 载入图像 使用cv2库载入图像非常简单,只使用cv2.imread函数即可。以下是载入图像的示例代码: import cv2 # 载入图像 img = cv2.…

    python 2023年5月14日
    00
  • python 读取文件并把矩阵转成numpy的两种方法

    在Python中,我们可以使用多种方法读取文件并将其转换为NumPy数组。以下是两种常见的方法: 使用numpy.loadtxt()函数 numpy.loadtxt()函数可以从文本文件中读取数据,并将其转换为NumPy数组。以下是一个使用numpy.loadtxt()函数读取文件并将其转换为NumPy数组的示例: import numpy as np # …

    python 2023年5月14日
    00
  • keras.layers.Layer中无法定义name的问题及解决

    在Keras中,可以使用keras.layers.Layer类来定义自定义层。但是,有时候在定义自定义层时,可能会遇到无法定义name的问题。以下是关于这个问题的详细攻略: 问题描述 在Keras中,自定义层的name属性通常是自动设置的,但是有时候可能需要手动设置name属性。然而,在keras.layers.Layer类中,无法直接定义name属性,因为…

    python 2023年5月14日
    00
  • Pytorch数据类型与转换(torch.tensor,torch.FloatTensor)

    PyTorch是一个开源的机器学习框架,提供了丰富的数据类型和转换方式。在使用PyTorch时,我们常常需要将数据转换成特定的数据类型,例如张量类型torch.tensor或浮点类型torch.FloatTensor等。本文将详细讲解PyTorch数据类型与转换的攻略。 PyTorch数据类型介绍 PyTorch提供了多种数据类型,包括整数类型、浮点类型、布…

    python 2023年5月13日
    00
  • Python3.5基础之NumPy模块的使用图文与实例详解

    Python3.5基础之NumPy模块的使用图文与实例详解 NumPy是Python中一个重要的科学计算库,它提供了高效的多维数组对象各数学函数,是数据科学和机学习领域不可或缺的工具之一。本文将详细介绍NumPy的用法,包括数组的创建、索引、切片、运算、统计等。 安装NumPy 在使用NumPy之前,需要先安装NumPy模块。可以使用pip命令进行安装,例如…

    python 2023年5月13日
    00
  • Python+Dlib+Opencv实现人脸采集并表情判别功能的代码

    Python+Dlib+Opencv实现人脸采集并表情判别功能需要分为以下几个步骤: 1. 安装必要的依赖库 在开始进行人脸采集并表情判别功能的实现前,需要确保已经安装以下必要的依赖库: Python 3.x Dlib OpenCV 如果没有安装以上依赖库,需要根据实际情况进行安装。 2. 实现人脸采集功能 在实现人脸采集功能前,需要先使用OpenCV和Dl…

    python 2023年5月14日
    00
  • python中numpy数组的csv文件写入与读取

    当我们在Python中使用Numpy库进行数据处理时,经常需要将Numpy数组保存到CSV文件中,或从CSV文件中读取Numpy数组。本文将详细介绍如何这两种操作。 Numpy数组写入CSV文件 在Numpy中,我们可以使用savetxt函数将Numpy数组保存到CSV文件中。下面一个示例,演示如何将Numpy数组保存到CSV文件中。 import nump…

    python 2023年5月14日
    00
合作推广
合作推广
分享本页
返回顶部