pytorch 使用单个GPU与多个GPU进行训练与测试的方法

在PyTorch中,我们可以使用单个GPU或多个GPU进行模型训练和测试。本文将详细讲解如何使用单个GPU和多个GPU进行训练和测试,并提供两个示例说明。

1. 使用单个GPU进行训练和测试

在PyTorch中,我们可以使用torch.cuda.device()方法将模型和数据移动到GPU上,并使用torch.nn.DataParallel()方法将模型复制到多个GPU上进行并行计算。以下是使用单个GPU进行训练和测试的示例代码:

import torch
import torch.nn as nn

# 定义模型
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.fc1 = nn.Linear(10, 5)
        self.fc2 = nn.Linear(5, 2)

    def forward(self, x):
        x = torch.relu(self.fc1(x))
        x = self.fc2(x)
        return x

# 实例化模型
net = Net()

# 将模型和数据移动到GPU上
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
net.to(device)

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

# 训练模型
for epoch in range(10):
    # 训练代码
    pass

# 测试模型
net.eval()
with torch.no_grad():
    # 测试代码
    pass

在上面的代码中,我们首先定义了一个包含两个全连接层的模型Net。然后,我们实例化了该模型,并使用torch.device()方法将模型和数据移动到GPU上。接下来,我们定义了损失函数和优化器,并使用它们训练模型。最后,我们使用net.eval()方法将模型设置为评估模式,并使用torch.no_grad()方法关闭梯度计算,进行模型测试。

2. 使用多个GPU进行训练和测试

在PyTorch中,我们可以使用torch.nn.DataParallel()方法将模型复制到多个GPU上进行并行计算。以下是使用多个GPU进行训练和测试的示例代码:

import torch
import torch.nn as nn

# 定义模型
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.fc1 = nn.Linear(10, 5)
        self.fc2 = nn.Linear(5, 2)

    def forward(self, x):
        x = torch.relu(self.fc1(x))
        x = self.fc2(x)
        return x

# 实例化模型
net = Net()

# 将模型和数据移动到GPU上
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
net.to(device)

# 复制模型到多个GPU上
if torch.cuda.device_count() > 1:
    net = nn.DataParallel(net)

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

# 训练模型
for epoch in range(10):
    # 训练代码
    pass

# 测试模型
net.eval()
with torch.no_grad():
    # 测试代码
    pass

在上面的代码中,我们首先定义了一个包含两个全连接层的模型Net。然后,我们实例化了该模型,并使用torch.device()方法将模型和数据移动到GPU上。接下来,我们使用torch.cuda.device_count()方法判断GPU数量,如果GPU数量大于1,则使用nn.DataParallel()方法将模型复制到多个GPU上进行并行计算。接下来,我们定义了损失函数和优化器,并使用它们训练模型。最后,我们使用net.eval()方法将模型设置为评估模式,并使用torch.no_grad()方法关闭梯度计算,进行模型测试。

3. 示例3:使用DistributedDataParallel进行分布式训练

除了使用torch.nn.DataParallel()方法进行多GPU训练外,我们还可以使用torch.nn.parallel.DistributedDataParallel()方法进行分布式训练。以下是使用DistributedDataParallel进行分布式训练的示例代码:

import torch
import torch.nn as nn
import torch.distributed as dist
import torch.multiprocessing as mp

# 定义模型
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.fc1 = nn.Linear(10, 5)
        self.fc2 = nn.Linear(5, 2)

    def forward(self, x):
        x = torch.relu(self.fc1(x))
        x = self.fc2(x)
        return x

# 定义训练函数
def train(rank, world_size):
    # 初始化进程组
    dist.init_process_group("gloo", rank=rank, world_size=world_size)

    # 实例化模型
    net = Net()

    # 将模型和数据移动到GPU上
    device = torch.device("cuda:{}".format(rank))
    net.to(device)

    # 分布式训练
    net = nn.parallel.DistributedDataParallel(net, device_ids=[rank])

    # 定义损失函数和优化器
    criterion = nn.CrossEntropyLoss()
    optimizer = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

    # 训练模型
    for epoch in range(10):
        # 训练代码
        pass

    # 释放进程组
    dist.destroy_process_group()

# 启动多个进程进行分布式训练
if __name__ == "__main__":
    world_size = 2
    mp.spawn(train, args=(world_size,), nprocs=world_size, join=True)

在上面的代码中,我们首先定义了一个包含两个全连接层的模型Net。然后,我们定义了一个train()函数,该函数使用torch.distributed.init_process_group()方法初始化进程组,并使用torch.nn.parallel.DistributedDataParallel()方法进行分布式训练。接下来,我们定义了损失函数和优化器,并使用它们训练模型。最后,我们使用torch.distributed.destroy_process_group()方法释放进程组,并使用torch.multiprocessing.spawn()方法启动多个进程进行分布式训练。

需要注意的是,分布式训练需要在多个节点上进行,需要在每个节点上运行相同的代码,并使用相同的进程组名称和进程组大小。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:pytorch 使用单个GPU与多个GPU进行训练与测试的方法 - Python技术站

(0)
上一篇 2023年5月15日
下一篇 2023年5月15日

相关文章

  • PyTorch中MaxPool的ceil_mode属性

    PyTorch中的MaxPool(最大池化)有一个属性:ceil_mode,默认为False(地板模式),为True时是天花板模式。    

    2023年4月8日
    00
  • 【Pytorch】:x.view() view()方法的使用

    在pytorch当中,我们经常会用到x.view()方法来进行数据维度的变化,但是这个方法具体该如何使用呢? 下面我来记录一下笔记: 一.按照传入数字使数据维度进行转换 首先,我们可以传入我们想要的维度,然后按照传入的数字对数据进行维度变化。比如,x.view()当中可以放入列表或者是单个数字,比如我们有代码先生成一个3*2维度的tensor矩阵,那么我们的…

    PyTorch 2023年4月8日
    00
  • pytorch中的size()、 squeeze()函数

    size() size()函数返回张量的各个维度的尺度。 squeeze() squeeze(input, dim=None),如果不给定dim,则把input的所有size为1的维度给移除;如果给定dim,则只移除给定的且size为1的维度。

    2023年4月7日
    00
  • 使用tensorboardX可视化Pytorch

    可视化loss和acc 参考https://www.jianshu.com/p/46eb3004beca 环境安装: conda activate xxx pip install tensorboardX pip install tensorflow 代码: from tensorboardXimport SummaryWriterwriter = Summ…

    PyTorch 2023年4月8日
    00
  • Pytorch使用tensorboardX实现loss曲线可视化。超详细!!!

    https://www.jianshu.com/p/46eb3004beca使用到的代码:writer=SummaryWriter()writer.add_scalar(‘scalar/test’,loss,epoch) ###tensorboardX #第一个参数可以简单理解为保存图的名称,第二个参数是可以理解为Y轴数据,第三个参数可以理解为X轴数据。#当…

    PyTorch 2023年4月7日
    00
  • PyTorch中的Batch Normalization

    Pytorch中的BatchNorm的API主要有: 1 torch.nn.BatchNorm1d(num_features, 2 3 eps=1e-05, 4 5 momentum=0.1, 6 7 affine=True, 8 9 track_running_stats=True) 一般来说pytorch中的模型都是继承nn.Module类的,都有一个属…

    PyTorch 2023年4月8日
    00
  • pytorch中tensor张量数据基础入门

    pytorch张量数据类型入门1、对于pytorch的深度学习框架,其基本的数据类型属于张量数据类型,即Tensor数据类型,对于python里面的int,float,int array,flaot array对应于pytorch里面即在前面加一个Tensor即可——intTensor ,Float tensor,IntTensor of size [d1,…

    2023年4月8日
    00
  • pytorch人工智能之torch.gather算子用法示例

    PyTorch人工智能之torch.gather算子用法示例 torch.gather是PyTorch中的一个重要算子,用于在指定维度上收集输入张量中指定索引处的值。在本文中,我们将介绍torch.gather的用法,并提供两个示例说明。 torch.gather的用法 torch.gather的语法如下: torch.gather(input, dim, …

    PyTorch 2023年5月15日
    00
合作推广
合作推广
分享本页
返回顶部