alpha-beta搜索算法

Alpha-Beta搜索算法攻略

Alpha-Beta搜索算法是一种用于博弈树搜索的优化算法,可以在搜索树中剪枝,从而减少搜索的时间和空间复杂度。本文将介绍Alpha-Beta搜索算法的原理、实现和示例,并提供两个示例说明。

1. 原理

Alpha-Beta搜索算法是一种基极小极大值搜索的优化算法。在搜索树中,每个节点都有一个极大值和一个极小值,表示当前玩家的最大收益和对手的最小收益。在搜索树的搜索过程中,Alpha-Beta搜索算法通过剪枝来减少搜索的时间和空间复杂度。

Alpha-Beta搜索算法的核心思想是:在搜索树中,如果一个节点的极大值已经大于等于某个节点的极小值,那么这个的子树就不需要再搜索了,因为这个节点的子树不可能对搜索结果产生影响。同样地,如果一个节点的极值已经小于等于某个节点的极大值,那么这个节点的子树也不需要再搜索了。

Alpha-Beta搜索算法通过维护两个值alpha和beta来实现剪枝alpha表示当前玩家的最大收益,beta表示对手的最小收益。在搜索树的搜索过程中,如果一个节点的极大值于等于beta,那么这个节点的子树就不需要再搜索了,因为对手不可能让当前玩家获得更大的收益。同样地,如果一个节点的极小值小于等于alpha,那么这个节点的子树也不需要再搜索了,因为当前玩家不可能获得更大的收益。

2. 实现

Alpha-Beta搜索算法可以使用递归或迭代的方式实现。以下是使用递归方式实现Alpha-Beta搜索算法的伪代码:

def alpha_beta_search(node, depth, alpha, beta, maximizing_player):
    if depth == 0 or node.is_terminal():
        return node.value

    if maximizing_player:
        value = -infinity
        for child in node.children():
            value = max(value, alpha_beta_search(child, depth - 1, alpha, beta, False))
            alpha = max(alpha, value)
            if beta <= alpha:
                break
        return value
    else:
        value = infinity
        for child in node.children():
            value = min(value, alpha_beta_search(child, depth - 1, alpha, beta, True))
            beta = min(beta, value)
            if beta <= alpha:
                break
        return value

在上面的代码中,node表示当前节点,depth表示搜索的深度,alpha表示当前玩家的最大收益,beta表示对手的最小收益,maximizing_player表示当前玩家是否是极大值玩家。

在搜索树的搜索过程中,如果当前玩家是极大值玩家,那么找到子节点中的最大值,并更新alpha的值。如果当前玩家是极小值玩家,那么需要找到子节点中的最小值,并更新beta的值。如果beta小于等于alpha,那么就可以剪枝,不需要再搜索子树了。

3. 示例1:井字棋游戏

以下是一个使用Alpha-Beta搜索算法实现井字棋游戏的示例:

class TicTacToe:
    def __init__(self):
        self.board = [[' ' for _ in range(3)] for _ in range(3)]

    def is_terminal(self):
        return self.get_winner() is not None or self.is_full()

    def is_full(self):
        return all(self.board[i][j] != ' ' for i in range(3) for j in range(3))

    def get_winner(self):
        for i in range(3):
            if self.board[i][0] == self.board[i][1] == self.board[i][2] != ' ':
                return self.board[i][0]
            if self.board[0][i] == self.board[1][i] == self.board[2][i] != ' ':
                return self.board[0][i]
        if self.board[0][0] == self.board[1][1] == self.board[2][2] != ' ':
            return self.board[0][0]
        if self.board[0][2] == self.board[1][1] == self.board[2][0] != ' ':
            return self.board[0][2]
        return None

    def get_children(self, player):
        children = []
        for i in range(3):
            for j in range(3):
                if self.board[i][j] == ' ':
                    child = TicTacToe()
                    child.board = [row[:] for row in self.board]
                    child.board[i][j] = player
                    children.append(child)
        return children

    def __str__(self):
        return '\n'.join(['|'.join(row) for row in self.board])

def alpha_beta_search(node, depth, alpha, beta, maximizing_player):
    if depth == 0 or node.is_terminal():
        return node.get_winner()

    if maximizing_player:
        value = -infinity
        for child in node.get_children('X'):
            value = max(value, alpha_beta_search(child, depth - 1, alpha, beta, False))
            alpha = max(alpha, value)
            if beta <= alpha:
                break
        return value
    else:
        value = infinity
        for child in node.get_children('O'):
            value = min(value, alpha_beta_search(child, depth - 1, alpha, beta, True))
            beta = min(beta, value)
            if beta <= alpha:
                break
        return value

game = TicTacToe()
print(alpha_beta_search(game, 9, -infinity, infinity, True))

在上面的代码中,TicTacToe类表示井字棋游戏,get_children方法用于获取当前玩家的所有可能的下一步棋局。alpha_beta_search函数用于搜索最优的下一步棋局。

在搜索树的搜索过程中,如果当前玩家是极大值玩家,那么需要找到子节点中的最大值,并更新alpha的值。如果当前玩家是极小值玩家,那么需要找到子节点中的最小值,并更新beta的值。如果beta小于等于alpha,那么就可以剪枝,不需要再搜索子树了。

4. 示例2:五子棋游戏

以下是一个使用Alpha-Beta搜索算法实现五子棋游戏的示例:

class Gomoku:
    def __init__(self):
        self.board = [[' ' for _ in range(15)] for _ in range(15)]

    def is_terminal(self):
        return self.get_winner() is not None or self.is_full()

    def is_full(self):
        return all(self.board[i][j] != ' ' for i in range(15) for j in range(15))

    def get_winner(self):
        for i in range(15):
            for j in range(11):
                if self.board[i][j:j+5] == ['X'] * 5:
                    return 'X'
                if self.board[i][j:j+5] == ['O'] * 5:
                    return 'O'
        for i in range(11):
            for j in range(15):
                if [self.board[i+k][j] for k in range(5)] == ['X'] * 5:
                    return 'X'
                if [self.board[i+k][j] for k in range(5)] == ['O'] * 5:
                    return 'O'
        for i in range(11):
            for j in range(11):
                if [self.board[i+k][j+k] for k in range(5)] == ['X'] * 5:
                    return 'X'
                if [self.board[i+k][j+k] for k in range(5)] == ['O'] * 5:
                    return 'O'
        for i in range(11):
            for j in range(4, 15):
                if [self.board[i+k][j-k] for k in range(5)] == ['X'] * 5:
                    return 'X'
                if [self.board[i+k][j-k] for k in range(5)] == ['O'] * 5:
                    return 'O'
        return None

    def get_children(self, player):
        children = []
        for i in range(15):
            for j in range(15):
                if self.board[i][j] == ' ':
                    child = Gomoku()
                    child.board = [row[:] for row in self.board]
                    child.board[i][j] = player
                    children.append(child)
        return children

    def __str__(self):
        return '\n'.join(['|'.join(row) for row in self.board])

def alpha_beta_search(node, depth, alpha, beta, maximizing_player):
    if depth == 0 or node.is_terminal():
        return node.get_winner()

    if maximizing_player:
        value = -infinity
        for child in node.get_children('X'):
            value = max(value, alpha_beta_search(child, depth - 1, alpha, beta, False))
            alpha = max(alpha, value)
            if beta <= alpha:
                break
        return value
    else:
        value = infinity
        for child in node.get_children('O'):
            value = min(value, alpha_beta_search(child, depth - 1, alpha, beta, True))
            beta = min(beta, value)
            if beta <= alpha:
                break
        return value

game = Gomoku()
print(alpha_beta_search(game, 3, -infinity, infinity, True))

在上面的代码中,Gomoku类表示五子棋游戏,get_children方法用于获取当前玩家的所有可能的下一步棋局。alpha_beta_search函数用于搜索最优的下一步棋局。

在搜索树的搜索过程中,如果当前玩家是极大值玩家,那么需要找到子节点中的最大值,并更新alpha的值。如果当前玩家是极小值玩家,那么需要找到子节点中的最小值,并更新beta的值。如果beta小于等于alpha,那么就可以剪枝,不需要再搜索子树了。

5. 总结

Alpha-Beta搜索算法是一种用于博弈树搜索的优化算法,可以在搜索树中剪枝,从而减少搜索的时间和空间复杂度。通过维护两个值alpha和beta来实现剪枝。Alpha-Beta搜索算法可以使用递归或迭代的方式实现。可以使用Alpha-Beta搜索算法实现各种博弈游戏,如井字棋、五子棋等。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:alpha-beta搜索算法 - Python技术站

(0)
上一篇 2023年5月7日
下一篇 2023年5月7日

相关文章

  • 深入剖析Java ArrayQueue(JDK)的源码

    以下是“深入剖析Java ArrayQueue(JDK)的源码”的完整攻略及示例说明: 深入剖析Java ArrayQueue(JDK)的源码 一、背景介绍 Java ArrayQueue是Java中的一个数据结构,在JDK中有其源码实现,供我们参考。因此,深入剖析Java ArrayQueue源码对我们理解该数据结构的工作原理,以及Java中的数据结构实现…

    other 2023年6月26日
    00
  • java核心技术卷1pdf

    Java核心技术卷1是Java开发者必备的一本书籍,它包含了Java编程的基础知识和高级技术。以下是获取Java核心技术卷1的PDF版本的攻略,包括两个示例说明。 步骤1:搜索并下载Java核心技术卷1的PDF版本 您可以在互联网上搜索Java核心技术卷1的PDF版本,并从可靠的网站下载它。以下是一些常用的网站: https://www.pdfdrive/ …

    other 2023年5月6日
    00
  • 微软 1 月更新导致 Win11 / Win10 / Server 等系统 VPN 失效、服务器故障

    微软 1 月更新导致 VPN 失效攻略 背景 微软在1月份的更新中,导致了一些用户在使用Windows 11、Windows 10和Windows Server等系统时,遇到了VPN失效和服务器故障的问题。这个问题可能会导致用户无法连接到VPN服务器,无法访问内部网络资源,以及其他与VPN相关的功能故障。 解决方案 以下是解决这个问题的攻略,包括两个示例说明…

    other 2023年8月3日
    00
  • vue loadmore 组件滑动加载更多源码解析

    以下是“vue loadmore 组件滑动加载更多源码解析”的完整攻略。 1. 前言 在现代 Web 开发中,无限滚动加载更多已经成为了非常普遍的功能需求。Vue 是一款非常流行的前端框架,它提供了丰富的组件机制,使得开发者能够非常方便地实现无限滚动加载更多功能。 本篇攻略主要介绍一个基于 Vue 的 Loadmore 组件,该组件可以在滑动页面时自动触发加…

    other 2023年6月25日
    00
  • autohotkey检测窗体控件的两种方法

    Autohotkey是一个强大的自动化脚本语言,常用于Windows操作系统环境下自动化任务和对软件快捷键映射。在编写Autohotkey脚本时,我们需要检测窗体控件来更好地控制和操作程序。下面是自动检测窗体控件的两种方法。 方法一:使用Window Spy Window Spy是Autohotkey自带的一个工具,它允许我们查看当前窗口句柄和窗体控件的具体…

    other 2023年6月27日
    00
  • 全网非常详细的pytest配置文件

    当我们在使用pytest进行测试时,有时候需要定制一些配置来更好地满足我们的需求。因此,编写一个全网非常详细的pytest配置文件可以帮助我们更好地进行测试。以下是完整攻略: 编写pytest配置文件 在项目根目录下创建一个pytest.ini文件,将以下内容写入其中: [pytest] addopts = -s -v testpaths = ./tests…

    other 2023年6月25日
    00
  • JavaScript中常见的几种继承方式

    当我们需要在一个类中使用另一个类的属性和方法,就需要使用继承来实现。在 JavaScript 中,有以下几种常见的继承方式: 1. 原型链继承 原型链继承是指将父类的实例作为子类的原型,既父类的属性和方法都会成为子类的实例属性和方法,我们可以使用如下代码来实现: function Parent() { this.name = ‘Parent’; } Pare…

    other 2023年6月26日
    00
  • 64位系统天正打开找不到cad的原因分析及解决方法

    64位系统天正打开找不到CAD的原因分析及解决方法攻略 原因分析 当在64位系统上使用天正软件打开CAD时,可能会遇到找不到CAD的问题。这可能是由以下原因引起的: CAD软件未正确安装:在64位系统上安装CAD软件时,可能会出现错误或不完整的安装过程,导致软件无法正常运行。 系统环境变量配置错误:CAD软件通常需要正确配置系统环境变量才能正常运行。如果环境…

    other 2023年7月28日
    00
合作推广
合作推广
分享本页
返回顶部